L(s) = 1 | − 2.34·2-s + 1.14·3-s + 3.48·4-s − 1.34·5-s − 2.68·6-s − 3.48·8-s − 1.68·9-s + 3.14·10-s − 1.14·11-s + 4.00·12-s − 1.53·15-s + 1.19·16-s − 5.83·17-s + 3.94·18-s − 3.34·19-s − 4.68·20-s + 2.68·22-s − 3.17·23-s − 4.00·24-s − 3.19·25-s − 5.37·27-s + 10.4·29-s + 3.60·30-s + 1.63·31-s + 4.17·32-s − 1.31·33-s + 13.6·34-s + ⋯ |
L(s) = 1 | − 1.65·2-s + 0.661·3-s + 1.74·4-s − 0.600·5-s − 1.09·6-s − 1.23·8-s − 0.561·9-s + 0.994·10-s − 0.345·11-s + 1.15·12-s − 0.397·15-s + 0.299·16-s − 1.41·17-s + 0.930·18-s − 0.766·19-s − 1.04·20-s + 0.572·22-s − 0.662·23-s − 0.816·24-s − 0.639·25-s − 1.03·27-s + 1.94·29-s + 0.658·30-s + 0.293·31-s + 0.738·32-s − 0.228·33-s + 2.34·34-s + ⋯ |
Λ(s)=(=(8281s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(8281s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.2946688595 |
L(21) |
≈ |
0.2946688595 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 13 | 1 |
good | 2 | 1+2.34T+2T2 |
| 3 | 1−1.14T+3T2 |
| 5 | 1+1.34T+5T2 |
| 11 | 1+1.14T+11T2 |
| 17 | 1+5.83T+17T2 |
| 19 | 1+3.34T+19T2 |
| 23 | 1+3.17T+23T2 |
| 29 | 1−10.4T+29T2 |
| 31 | 1−1.63T+31T2 |
| 37 | 1+8.51T+37T2 |
| 41 | 1+0.292T+41T2 |
| 43 | 1+8.15T+43T2 |
| 47 | 1+10.6T+47T2 |
| 53 | 1+0.782T+53T2 |
| 59 | 1−12.6T+59T2 |
| 61 | 1−2T+61T2 |
| 67 | 1−6.10T+67T2 |
| 71 | 1+1.53T+71T2 |
| 73 | 1+15.3T+73T2 |
| 79 | 1−0.882T+79T2 |
| 83 | 1+12.1T+83T2 |
| 89 | 1−5.73T+89T2 |
| 97 | 1+5.34T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.218468652043803442478317019559, −7.37211938999668711485510974266, −6.72813126981089345010888097907, −6.15553634445176828404268341318, −4.95430035750646220004965193425, −4.14028191921784606671357751026, −3.16595504086723249201992777847, −2.38075751983660500864425938109, −1.74110741684718961817209880768, −0.31546637797499390687043156064,
0.31546637797499390687043156064, 1.74110741684718961817209880768, 2.38075751983660500864425938109, 3.16595504086723249201992777847, 4.14028191921784606671357751026, 4.95430035750646220004965193425, 6.15553634445176828404268341318, 6.72813126981089345010888097907, 7.37211938999668711485510974266, 8.218468652043803442478317019559