Properties

Label 2-91e2-1.1-c1-0-236
Degree $2$
Conductor $8281$
Sign $1$
Analytic cond. $66.1241$
Root an. cond. $8.13167$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.30·2-s + 2.88·3-s − 0.302·4-s − 2.88·5-s + 3.75·6-s − 3·8-s + 5.30·9-s − 3.75·10-s + 5.90·11-s − 0.872·12-s − 8.30·15-s − 3.30·16-s − 0.872·17-s + 6.90·18-s − 2.88·19-s + 0.872·20-s + 7.69·22-s + 6.60·23-s − 8.64·24-s + 3.30·25-s + 6.63·27-s + 1.30·29-s − 10.8·30-s − 0.872·31-s + 1.69·32-s + 17.0·33-s − 1.13·34-s + ⋯
L(s)  = 1  + 0.921·2-s + 1.66·3-s − 0.151·4-s − 1.28·5-s + 1.53·6-s − 1.06·8-s + 1.76·9-s − 1.18·10-s + 1.78·11-s − 0.251·12-s − 2.14·15-s − 0.825·16-s − 0.211·17-s + 1.62·18-s − 0.661·19-s + 0.195·20-s + 1.64·22-s + 1.37·23-s − 1.76·24-s + 0.660·25-s + 1.27·27-s + 0.241·29-s − 1.97·30-s − 0.156·31-s + 0.300·32-s + 2.96·33-s − 0.194·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8281 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8281 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8281\)    =    \(7^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(66.1241\)
Root analytic conductor: \(8.13167\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8281,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.599016058\)
\(L(\frac12)\) \(\approx\) \(4.599016058\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
13 \( 1 \)
good2 \( 1 - 1.30T + 2T^{2} \)
3 \( 1 - 2.88T + 3T^{2} \)
5 \( 1 + 2.88T + 5T^{2} \)
11 \( 1 - 5.90T + 11T^{2} \)
17 \( 1 + 0.872T + 17T^{2} \)
19 \( 1 + 2.88T + 19T^{2} \)
23 \( 1 - 6.60T + 23T^{2} \)
29 \( 1 - 1.30T + 29T^{2} \)
31 \( 1 + 0.872T + 31T^{2} \)
37 \( 1 + 1.39T + 37T^{2} \)
41 \( 1 + 7.50T + 41T^{2} \)
43 \( 1 - 5.51T + 43T^{2} \)
47 \( 1 - 12.3T + 47T^{2} \)
53 \( 1 - 9.60T + 53T^{2} \)
59 \( 1 + 6.63T + 59T^{2} \)
61 \( 1 - 5.76T + 61T^{2} \)
67 \( 1 + T + 67T^{2} \)
71 \( 1 + 4T + 71T^{2} \)
73 \( 1 - 5.76T + 73T^{2} \)
79 \( 1 - 0.605T + 79T^{2} \)
83 \( 1 - 6.63T + 83T^{2} \)
89 \( 1 + 8.64T + 89T^{2} \)
97 \( 1 - 7.77T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.897563363640863424603134321647, −7.04659748742512229210620273583, −6.69778715413425738493552369828, −5.58441032063065844183125742051, −4.38785186646930471192366119893, −4.25290009521068291650167707685, −3.54147355368751572611840103133, −3.11140668115273357675203638728, −2.11525785735425788266658815024, −0.862613518979998293977666889088, 0.862613518979998293977666889088, 2.11525785735425788266658815024, 3.11140668115273357675203638728, 3.54147355368751572611840103133, 4.25290009521068291650167707685, 4.38785186646930471192366119893, 5.58441032063065844183125742051, 6.69778715413425738493552369828, 7.04659748742512229210620273583, 7.897563363640863424603134321647

Graph of the $Z$-function along the critical line