L(s) = 1 | + 0.456·2-s − 2.79·3-s − 1.79·4-s − 0.456·5-s − 1.27·6-s − 1.73·8-s + 4.79·9-s − 0.208·10-s − 3.92·11-s + 5·12-s + 1.27·15-s + 2.79·16-s + 3·17-s + 2.18·18-s − 1.37·19-s + 0.818·20-s − 1.79·22-s + 1.58·23-s + 4.83·24-s − 4.79·25-s − 4.99·27-s − 6.79·29-s + 0.582·30-s − 8.66·31-s + 4.73·32-s + 10.9·33-s + 1.37·34-s + ⋯ |
L(s) = 1 | + 0.323·2-s − 1.61·3-s − 0.895·4-s − 0.204·5-s − 0.520·6-s − 0.612·8-s + 1.59·9-s − 0.0660·10-s − 1.18·11-s + 1.44·12-s + 0.329·15-s + 0.697·16-s + 0.727·17-s + 0.515·18-s − 0.314·19-s + 0.182·20-s − 0.381·22-s + 0.329·23-s + 0.986·24-s − 0.958·25-s − 0.962·27-s − 1.26·29-s + 0.106·30-s − 1.55·31-s + 0.837·32-s + 1.90·33-s + 0.235·34-s + ⋯ |
Λ(s)=(=(8281s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(8281s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 13 | 1 |
good | 2 | 1−0.456T+2T2 |
| 3 | 1+2.79T+3T2 |
| 5 | 1+0.456T+5T2 |
| 11 | 1+3.92T+11T2 |
| 17 | 1−3T+17T2 |
| 19 | 1+1.37T+19T2 |
| 23 | 1−1.58T+23T2 |
| 29 | 1+6.79T+29T2 |
| 31 | 1+8.66T+31T2 |
| 37 | 1−6.92T+37T2 |
| 41 | 1−7.84T+41T2 |
| 43 | 1+9.37T+43T2 |
| 47 | 1+9.57T+47T2 |
| 53 | 1−6.16T+53T2 |
| 59 | 1−12.3T+59T2 |
| 61 | 1−14.7T+61T2 |
| 67 | 1−4.47T+67T2 |
| 71 | 1−4.37T+71T2 |
| 73 | 1+3.46T+73T2 |
| 79 | 1+6T+79T2 |
| 83 | 1−7.02T+83T2 |
| 89 | 1−16.1T+89T2 |
| 97 | 1−7.28T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.46165394824936461986637080256, −6.56629245457661557270617377360, −5.71570223720788005835521735337, −5.43408824262829632141378971710, −4.90976747342396851652808757254, −4.04806462246680120676345033995, −3.43463228160997762014783205089, −2.12184621440783039473598579230, −0.791226229635397120914887217480, 0,
0.791226229635397120914887217480, 2.12184621440783039473598579230, 3.43463228160997762014783205089, 4.04806462246680120676345033995, 4.90976747342396851652808757254, 5.43408824262829632141378971710, 5.71570223720788005835521735337, 6.56629245457661557270617377360, 7.46165394824936461986637080256