Properties

Label 2-91e2-1.1-c1-0-202
Degree $2$
Conductor $8281$
Sign $-1$
Analytic cond. $66.1241$
Root an. cond. $8.13167$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.456·2-s − 2.79·3-s − 1.79·4-s − 0.456·5-s − 1.27·6-s − 1.73·8-s + 4.79·9-s − 0.208·10-s − 3.92·11-s + 5·12-s + 1.27·15-s + 2.79·16-s + 3·17-s + 2.18·18-s − 1.37·19-s + 0.818·20-s − 1.79·22-s + 1.58·23-s + 4.83·24-s − 4.79·25-s − 4.99·27-s − 6.79·29-s + 0.582·30-s − 8.66·31-s + 4.73·32-s + 10.9·33-s + 1.37·34-s + ⋯
L(s)  = 1  + 0.323·2-s − 1.61·3-s − 0.895·4-s − 0.204·5-s − 0.520·6-s − 0.612·8-s + 1.59·9-s − 0.0660·10-s − 1.18·11-s + 1.44·12-s + 0.329·15-s + 0.697·16-s + 0.727·17-s + 0.515·18-s − 0.314·19-s + 0.182·20-s − 0.381·22-s + 0.329·23-s + 0.986·24-s − 0.958·25-s − 0.962·27-s − 1.26·29-s + 0.106·30-s − 1.55·31-s + 0.837·32-s + 1.90·33-s + 0.235·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8281 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8281 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8281\)    =    \(7^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(66.1241\)
Root analytic conductor: \(8.13167\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8281,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
13 \( 1 \)
good2 \( 1 - 0.456T + 2T^{2} \)
3 \( 1 + 2.79T + 3T^{2} \)
5 \( 1 + 0.456T + 5T^{2} \)
11 \( 1 + 3.92T + 11T^{2} \)
17 \( 1 - 3T + 17T^{2} \)
19 \( 1 + 1.37T + 19T^{2} \)
23 \( 1 - 1.58T + 23T^{2} \)
29 \( 1 + 6.79T + 29T^{2} \)
31 \( 1 + 8.66T + 31T^{2} \)
37 \( 1 - 6.92T + 37T^{2} \)
41 \( 1 - 7.84T + 41T^{2} \)
43 \( 1 + 9.37T + 43T^{2} \)
47 \( 1 + 9.57T + 47T^{2} \)
53 \( 1 - 6.16T + 53T^{2} \)
59 \( 1 - 12.3T + 59T^{2} \)
61 \( 1 - 14.7T + 61T^{2} \)
67 \( 1 - 4.47T + 67T^{2} \)
71 \( 1 - 4.37T + 71T^{2} \)
73 \( 1 + 3.46T + 73T^{2} \)
79 \( 1 + 6T + 79T^{2} \)
83 \( 1 - 7.02T + 83T^{2} \)
89 \( 1 - 16.1T + 89T^{2} \)
97 \( 1 - 7.28T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.46165394824936461986637080256, −6.56629245457661557270617377360, −5.71570223720788005835521735337, −5.43408824262829632141378971710, −4.90976747342396851652808757254, −4.04806462246680120676345033995, −3.43463228160997762014783205089, −2.12184621440783039473598579230, −0.791226229635397120914887217480, 0, 0.791226229635397120914887217480, 2.12184621440783039473598579230, 3.43463228160997762014783205089, 4.04806462246680120676345033995, 4.90976747342396851652808757254, 5.43408824262829632141378971710, 5.71570223720788005835521735337, 6.56629245457661557270617377360, 7.46165394824936461986637080256

Graph of the $Z$-function along the critical line