L(s) = 1 | + 0.456·2-s − 2.79·3-s − 1.79·4-s − 0.456·5-s − 1.27·6-s − 1.73·8-s + 4.79·9-s − 0.208·10-s − 3.92·11-s + 5·12-s + 1.27·15-s + 2.79·16-s + 3·17-s + 2.18·18-s − 1.37·19-s + 0.818·20-s − 1.79·22-s + 1.58·23-s + 4.83·24-s − 4.79·25-s − 4.99·27-s − 6.79·29-s + 0.582·30-s − 8.66·31-s + 4.73·32-s + 10.9·33-s + 1.37·34-s + ⋯ |
L(s) = 1 | + 0.323·2-s − 1.61·3-s − 0.895·4-s − 0.204·5-s − 0.520·6-s − 0.612·8-s + 1.59·9-s − 0.0660·10-s − 1.18·11-s + 1.44·12-s + 0.329·15-s + 0.697·16-s + 0.727·17-s + 0.515·18-s − 0.314·19-s + 0.182·20-s − 0.381·22-s + 0.329·23-s + 0.986·24-s − 0.958·25-s − 0.962·27-s − 1.26·29-s + 0.106·30-s − 1.55·31-s + 0.837·32-s + 1.90·33-s + 0.235·34-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 8281 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8281 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 13 | \( 1 \) |
good | 2 | \( 1 - 0.456T + 2T^{2} \) |
| 3 | \( 1 + 2.79T + 3T^{2} \) |
| 5 | \( 1 + 0.456T + 5T^{2} \) |
| 11 | \( 1 + 3.92T + 11T^{2} \) |
| 17 | \( 1 - 3T + 17T^{2} \) |
| 19 | \( 1 + 1.37T + 19T^{2} \) |
| 23 | \( 1 - 1.58T + 23T^{2} \) |
| 29 | \( 1 + 6.79T + 29T^{2} \) |
| 31 | \( 1 + 8.66T + 31T^{2} \) |
| 37 | \( 1 - 6.92T + 37T^{2} \) |
| 41 | \( 1 - 7.84T + 41T^{2} \) |
| 43 | \( 1 + 9.37T + 43T^{2} \) |
| 47 | \( 1 + 9.57T + 47T^{2} \) |
| 53 | \( 1 - 6.16T + 53T^{2} \) |
| 59 | \( 1 - 12.3T + 59T^{2} \) |
| 61 | \( 1 - 14.7T + 61T^{2} \) |
| 67 | \( 1 - 4.47T + 67T^{2} \) |
| 71 | \( 1 - 4.37T + 71T^{2} \) |
| 73 | \( 1 + 3.46T + 73T^{2} \) |
| 79 | \( 1 + 6T + 79T^{2} \) |
| 83 | \( 1 - 7.02T + 83T^{2} \) |
| 89 | \( 1 - 16.1T + 89T^{2} \) |
| 97 | \( 1 - 7.28T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.46165394824936461986637080256, −6.56629245457661557270617377360, −5.71570223720788005835521735337, −5.43408824262829632141378971710, −4.90976747342396851652808757254, −4.04806462246680120676345033995, −3.43463228160997762014783205089, −2.12184621440783039473598579230, −0.791226229635397120914887217480, 0,
0.791226229635397120914887217480, 2.12184621440783039473598579230, 3.43463228160997762014783205089, 4.04806462246680120676345033995, 4.90976747342396851652808757254, 5.43408824262829632141378971710, 5.71570223720788005835521735337, 6.56629245457661557270617377360, 7.46165394824936461986637080256