| L(s) = 1 | + 3-s + 9-s − 19-s + 25-s + 27-s − 2·31-s + 49-s − 57-s − 2·61-s − 2·67-s − 2·73-s + 75-s + 2·79-s + 81-s − 2·93-s + 2·103-s + ⋯ |
| L(s) = 1 | + 3-s + 9-s − 19-s + 25-s + 27-s − 2·31-s + 49-s − 57-s − 2·61-s − 2·67-s − 2·73-s + 75-s + 2·79-s + 81-s − 2·93-s + 2·103-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 912 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 912 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.376081608\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.376081608\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 - T \) |
| 19 | \( 1 + T \) |
| good | 5 | \( ( 1 - T )( 1 + T ) \) |
| 7 | \( ( 1 - T )( 1 + T ) \) |
| 11 | \( 1 + T^{2} \) |
| 13 | \( ( 1 - T )( 1 + T ) \) |
| 17 | \( ( 1 - T )( 1 + T ) \) |
| 23 | \( 1 + T^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( ( 1 + T )^{2} \) |
| 37 | \( ( 1 - T )( 1 + T ) \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( ( 1 - T )( 1 + T ) \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( ( 1 - T )( 1 + T ) \) |
| 61 | \( ( 1 + T )^{2} \) |
| 67 | \( ( 1 + T )^{2} \) |
| 71 | \( ( 1 - T )( 1 + T ) \) |
| 73 | \( ( 1 + T )^{2} \) |
| 79 | \( ( 1 - T )^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( ( 1 - T )( 1 + T ) \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.34321535896789694159146787203, −9.129948420252001773069007280996, −8.858814567487548865934865918131, −7.76991273672282185787115580822, −7.11140214992790007432015992541, −6.07868223675329210057662044851, −4.82107941824104839102699292285, −3.89043628053402266596020545933, −2.87333022017225394168167890183, −1.73066355502210936546096220170,
1.73066355502210936546096220170, 2.87333022017225394168167890183, 3.89043628053402266596020545933, 4.82107941824104839102699292285, 6.07868223675329210057662044851, 7.11140214992790007432015992541, 7.76991273672282185787115580822, 8.858814567487548865934865918131, 9.129948420252001773069007280996, 10.34321535896789694159146787203