Properties

Label 2-912-228.179-c0-0-1
Degree $2$
Conductor $912$
Sign $0.910 + 0.412i$
Analytic cond. $0.455147$
Root an. cond. $0.674646$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.5 + 0.866i)3-s − 1.73i·7-s + (−0.499 − 0.866i)9-s + (1.5 − 0.866i)13-s − 19-s + (1.49 + 0.866i)21-s + (−0.5 − 0.866i)25-s + 0.999·27-s + 31-s + 1.73i·37-s + 1.73i·39-s + (1.5 + 0.866i)43-s − 1.99·49-s + (0.5 − 0.866i)57-s + (−0.5 − 0.866i)61-s + ⋯
L(s)  = 1  + (−0.5 + 0.866i)3-s − 1.73i·7-s + (−0.499 − 0.866i)9-s + (1.5 − 0.866i)13-s − 19-s + (1.49 + 0.866i)21-s + (−0.5 − 0.866i)25-s + 0.999·27-s + 31-s + 1.73i·37-s + 1.73i·39-s + (1.5 + 0.866i)43-s − 1.99·49-s + (0.5 − 0.866i)57-s + (−0.5 − 0.866i)61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 912 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.910 + 0.412i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 912 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.910 + 0.412i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(912\)    =    \(2^{4} \cdot 3 \cdot 19\)
Sign: $0.910 + 0.412i$
Analytic conductor: \(0.455147\)
Root analytic conductor: \(0.674646\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{912} (863, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 912,\ (\ :0),\ 0.910 + 0.412i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.8413133056\)
\(L(\frac12)\) \(\approx\) \(0.8413133056\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (0.5 - 0.866i)T \)
19 \( 1 + T \)
good5 \( 1 + (0.5 + 0.866i)T^{2} \)
7 \( 1 + 1.73iT - T^{2} \)
11 \( 1 + T^{2} \)
13 \( 1 + (-1.5 + 0.866i)T + (0.5 - 0.866i)T^{2} \)
17 \( 1 + (0.5 + 0.866i)T^{2} \)
23 \( 1 + (-0.5 + 0.866i)T^{2} \)
29 \( 1 + (-0.5 + 0.866i)T^{2} \)
31 \( 1 - T + T^{2} \)
37 \( 1 - 1.73iT - T^{2} \)
41 \( 1 + (-0.5 - 0.866i)T^{2} \)
43 \( 1 + (-1.5 - 0.866i)T + (0.5 + 0.866i)T^{2} \)
47 \( 1 + (-0.5 + 0.866i)T^{2} \)
53 \( 1 + (-0.5 + 0.866i)T^{2} \)
59 \( 1 + (0.5 + 0.866i)T^{2} \)
61 \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \)
67 \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \)
71 \( 1 + (0.5 + 0.866i)T^{2} \)
73 \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \)
79 \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \)
83 \( 1 + T^{2} \)
89 \( 1 + (-0.5 + 0.866i)T^{2} \)
97 \( 1 + (0.5 + 0.866i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.44517312024561282274350383685, −9.698371078832326721865306984382, −8.516162003757247352936647733747, −7.84930549095709127944490498619, −6.55157865660213038101024641484, −6.05667542956163776937233349902, −4.67805484962293904559876738960, −4.07414465839919399666334338079, −3.18690109174963381921795330804, −0.971879820341198687377397898927, 1.69137513154022773232491994232, 2.60526066064608882421087183903, 4.12793233970819820594824663808, 5.51526903210991131555756247306, 5.97886334414949892191968872077, 6.74832591917933938275961302806, 7.88594942305067594626713894947, 8.776584838130294206236292347636, 9.139731769298838817332191762202, 10.63329832787308778048650249878

Graph of the $Z$-function along the critical line