L(s) = 1 | + (1.5 + 0.866i)3-s + (−3.20 + 5.55i)5-s + 2.26·7-s + (1.5 + 2.59i)9-s + 20.0·11-s + (−0.135 + 0.0782i)13-s + (−9.62 + 5.55i)15-s + (12.3 − 21.3i)17-s + (18.9 − 1.60i)19-s + (3.39 + 1.95i)21-s + (2.62 + 4.54i)23-s + (−8.07 − 13.9i)25-s + 5.19i·27-s + (−31.4 + 18.1i)29-s − 17.1i·31-s + ⋯ |
L(s) = 1 | + (0.5 + 0.288i)3-s + (−0.641 + 1.11i)5-s + 0.323·7-s + (0.166 + 0.288i)9-s + 1.82·11-s + (−0.0104 + 0.00601i)13-s + (−0.641 + 0.370i)15-s + (0.724 − 1.25i)17-s + (0.996 − 0.0847i)19-s + (0.161 + 0.0933i)21-s + (0.114 + 0.197i)23-s + (−0.323 − 0.559i)25-s + 0.192i·27-s + (−1.08 + 0.626i)29-s − 0.551i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 912 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.334 - 0.942i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 912 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.334 - 0.942i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(2.402443112\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.402443112\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-1.5 - 0.866i)T \) |
| 19 | \( 1 + (-18.9 + 1.60i)T \) |
good | 5 | \( 1 + (3.20 - 5.55i)T + (-12.5 - 21.6i)T^{2} \) |
| 7 | \( 1 - 2.26T + 49T^{2} \) |
| 11 | \( 1 - 20.0T + 121T^{2} \) |
| 13 | \( 1 + (0.135 - 0.0782i)T + (84.5 - 146. i)T^{2} \) |
| 17 | \( 1 + (-12.3 + 21.3i)T + (-144.5 - 250. i)T^{2} \) |
| 23 | \( 1 + (-2.62 - 4.54i)T + (-264.5 + 458. i)T^{2} \) |
| 29 | \( 1 + (31.4 - 18.1i)T + (420.5 - 728. i)T^{2} \) |
| 31 | \( 1 + 17.1iT - 961T^{2} \) |
| 37 | \( 1 - 42.7iT - 1.36e3T^{2} \) |
| 41 | \( 1 + (-30.0 - 17.3i)T + (840.5 + 1.45e3i)T^{2} \) |
| 43 | \( 1 + (12.5 - 21.7i)T + (-924.5 - 1.60e3i)T^{2} \) |
| 47 | \( 1 + (-14.6 - 25.4i)T + (-1.10e3 + 1.91e3i)T^{2} \) |
| 53 | \( 1 + (-48.4 + 27.9i)T + (1.40e3 - 2.43e3i)T^{2} \) |
| 59 | \( 1 + (-29.9 - 17.2i)T + (1.74e3 + 3.01e3i)T^{2} \) |
| 61 | \( 1 + (-27.3 - 47.4i)T + (-1.86e3 + 3.22e3i)T^{2} \) |
| 67 | \( 1 + (66.0 - 38.1i)T + (2.24e3 - 3.88e3i)T^{2} \) |
| 71 | \( 1 + (63.6 + 36.7i)T + (2.52e3 + 4.36e3i)T^{2} \) |
| 73 | \( 1 + (45.9 - 79.5i)T + (-2.66e3 - 4.61e3i)T^{2} \) |
| 79 | \( 1 + (-53.1 - 30.6i)T + (3.12e3 + 5.40e3i)T^{2} \) |
| 83 | \( 1 - 148.T + 6.88e3T^{2} \) |
| 89 | \( 1 + (62.7 - 36.2i)T + (3.96e3 - 6.85e3i)T^{2} \) |
| 97 | \( 1 + (70.0 + 40.4i)T + (4.70e3 + 8.14e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.813250651449596898387265980800, −9.416045124756032532359318015788, −8.370869099228394829267838297413, −7.31827743031837835181650017347, −7.00960259092200673924660943698, −5.75639782156332840413160944878, −4.50740215561729105721878391394, −3.56182730401913329809326028371, −2.89805559422437532682659405679, −1.28766385106219709133154168023,
0.890632445643735087952025284014, 1.77726468133607707783078230001, 3.62529796242779277247770814157, 4.08754300956466918703298741470, 5.29586119075565701591739761457, 6.31521188870805874718483596951, 7.42456093933664782508670202079, 8.082492633407446799615856543719, 8.966274626985197829699296530550, 9.324679897063740506479284661687