| L(s) = 1 | + (−0.881 + 1.49i)3-s − 1.27i·5-s + 0.100i·7-s + (−1.44 − 2.62i)9-s − 3.88·11-s + 5.91·13-s + (1.90 + 1.12i)15-s + 2.12i·17-s + i·19-s + (−0.150 − 0.0887i)21-s + 8.22·23-s + 3.36·25-s + (5.19 + 0.165i)27-s − 7.33i·29-s + 2.91i·31-s + ⋯ |
| L(s) = 1 | + (−0.509 + 0.860i)3-s − 0.572i·5-s + 0.0380i·7-s + (−0.481 − 0.876i)9-s − 1.17·11-s + 1.64·13-s + (0.492 + 0.291i)15-s + 0.514i·17-s + 0.229i·19-s + (−0.0327 − 0.0193i)21-s + 1.71·23-s + 0.672·25-s + (0.999 + 0.0318i)27-s − 1.36i·29-s + 0.523i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 912 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.871 - 0.490i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 912 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.871 - 0.490i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.25704 + 0.329686i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.25704 + 0.329686i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.881 - 1.49i)T \) |
| 19 | \( 1 - iT \) |
| good | 5 | \( 1 + 1.27iT - 5T^{2} \) |
| 7 | \( 1 - 0.100iT - 7T^{2} \) |
| 11 | \( 1 + 3.88T + 11T^{2} \) |
| 13 | \( 1 - 5.91T + 13T^{2} \) |
| 17 | \( 1 - 2.12iT - 17T^{2} \) |
| 23 | \( 1 - 8.22T + 23T^{2} \) |
| 29 | \( 1 + 7.33iT - 29T^{2} \) |
| 31 | \( 1 - 2.91iT - 31T^{2} \) |
| 37 | \( 1 + 3.36T + 37T^{2} \) |
| 41 | \( 1 + 0.0327iT - 41T^{2} \) |
| 43 | \( 1 - 7.23iT - 43T^{2} \) |
| 47 | \( 1 - 7.65T + 47T^{2} \) |
| 53 | \( 1 - 13.7iT - 53T^{2} \) |
| 59 | \( 1 - 8.10T + 59T^{2} \) |
| 61 | \( 1 + 4.04T + 61T^{2} \) |
| 67 | \( 1 + 10.5iT - 67T^{2} \) |
| 71 | \( 1 + 3.62T + 71T^{2} \) |
| 73 | \( 1 - 9.76T + 73T^{2} \) |
| 79 | \( 1 + 0.457iT - 79T^{2} \) |
| 83 | \( 1 - 2.00T + 83T^{2} \) |
| 89 | \( 1 + 11.0iT - 89T^{2} \) |
| 97 | \( 1 - 12.7T + 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.49634305558696486487051905418, −9.187340649608165165977518861948, −8.736581249242928224711087742358, −7.79931292373004069372468466031, −6.47436887307201339310000280435, −5.67527062529230772752731142406, −4.91424894361735794366453252426, −3.97727972397294071358620197371, −2.91276923918705024633079271664, −0.990172669333825651347415596596,
0.933771629704021937985443580366, 2.43485176890828399784837284156, 3.42250970777236146250181768731, 5.03904426929130566962797301366, 5.67645890173631409730184353070, 6.84519700890689705677878382702, 7.17076321934574748277149874891, 8.329260438998278577242057534380, 8.947852311899739610837085255420, 10.45735337754269144602241760652