Properties

Label 2-912-12.11-c1-0-1
Degree $2$
Conductor $912$
Sign $-0.965 + 0.258i$
Analytic cond. $7.28235$
Root an. cond. $2.69858$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.448 + 1.67i)3-s − 2.39i·5-s + 3.59i·7-s + (−2.59 + 1.50i)9-s − 5.96·11-s − 3.34·13-s + (4.01 − 1.07i)15-s − 6.52i·17-s + i·19-s + (−6.01 + 1.61i)21-s − 3.33·23-s − 0.748·25-s + (−3.67 − 3.67i)27-s + 5.66i·29-s − 1.34i·31-s + ⋯
L(s)  = 1  + (0.258 + 0.965i)3-s − 1.07i·5-s + 1.35i·7-s + (−0.865 + 0.500i)9-s − 1.79·11-s − 0.928·13-s + (1.03 − 0.277i)15-s − 1.58i·17-s + 0.229i·19-s + (−1.31 + 0.352i)21-s − 0.695·23-s − 0.149·25-s + (−0.707 − 0.706i)27-s + 1.05i·29-s − 0.241i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 912 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.965 + 0.258i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 912 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.965 + 0.258i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(912\)    =    \(2^{4} \cdot 3 \cdot 19\)
Sign: $-0.965 + 0.258i$
Analytic conductor: \(7.28235\)
Root analytic conductor: \(2.69858\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{912} (191, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 912,\ (\ :1/2),\ -0.965 + 0.258i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.0411662 - 0.312551i\)
\(L(\frac12)\) \(\approx\) \(0.0411662 - 0.312551i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (-0.448 - 1.67i)T \)
19 \( 1 - iT \)
good5 \( 1 + 2.39iT - 5T^{2} \)
7 \( 1 - 3.59iT - 7T^{2} \)
11 \( 1 + 5.96T + 11T^{2} \)
13 \( 1 + 3.34T + 13T^{2} \)
17 \( 1 + 6.52iT - 17T^{2} \)
23 \( 1 + 3.33T + 23T^{2} \)
29 \( 1 - 5.66iT - 29T^{2} \)
31 \( 1 + 1.34iT - 31T^{2} \)
37 \( 1 + 6.84T + 37T^{2} \)
41 \( 1 - 7.68iT - 41T^{2} \)
43 \( 1 - 0.402iT - 43T^{2} \)
47 \( 1 - 1.83T + 47T^{2} \)
53 \( 1 - 1.76iT - 53T^{2} \)
59 \( 1 - 6.22T + 59T^{2} \)
61 \( 1 + 12.1T + 61T^{2} \)
67 \( 1 - 0.300iT - 67T^{2} \)
71 \( 1 + 7.35T + 71T^{2} \)
73 \( 1 - 15.6T + 73T^{2} \)
79 \( 1 - 2.80iT - 79T^{2} \)
83 \( 1 + 15.7T + 83T^{2} \)
89 \( 1 + 10.6iT - 89T^{2} \)
97 \( 1 + 7.04T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.30302124642742619282559916408, −9.624632153806458908922955004376, −8.926912616148333956026344339493, −8.298969082099898836378602105352, −7.44575022529547363603545595601, −5.74806809574944824679633129940, −5.07869643248848537366348325787, −4.76670610375438622337936352897, −3.04959475443990581048269554787, −2.33011057239473988213960340111, 0.12958697075659524217338431283, 2.01089089501105062342508029704, 2.94726980671084447481567491414, 4.00934283571012244410276836283, 5.42076062852557260258116949765, 6.44758813724539837375594448342, 7.25674627088311712251385038768, 7.69423865033598757270232473501, 8.456299118477520822905603205788, 9.978526762460816394190859156079

Graph of the $Z$-function along the critical line