Properties

Label 2-912-1.1-c1-0-8
Degree $2$
Conductor $912$
Sign $1$
Analytic cond. $7.28235$
Root an. cond. $2.69858$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 5-s + 3·7-s + 9-s + 5·11-s − 2·13-s + 15-s − 17-s − 19-s + 3·21-s − 4·23-s − 4·25-s + 27-s − 6·29-s + 10·31-s + 5·33-s + 3·35-s − 2·39-s + 11·43-s + 45-s − 9·47-s + 2·49-s − 51-s + 10·53-s + 5·55-s − 57-s − 4·59-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.447·5-s + 1.13·7-s + 1/3·9-s + 1.50·11-s − 0.554·13-s + 0.258·15-s − 0.242·17-s − 0.229·19-s + 0.654·21-s − 0.834·23-s − 4/5·25-s + 0.192·27-s − 1.11·29-s + 1.79·31-s + 0.870·33-s + 0.507·35-s − 0.320·39-s + 1.67·43-s + 0.149·45-s − 1.31·47-s + 2/7·49-s − 0.140·51-s + 1.37·53-s + 0.674·55-s − 0.132·57-s − 0.520·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 912 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 912 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(912\)    =    \(2^{4} \cdot 3 \cdot 19\)
Sign: $1$
Analytic conductor: \(7.28235\)
Root analytic conductor: \(2.69858\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 912,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.428493675\)
\(L(\frac12)\) \(\approx\) \(2.428493675\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
19 \( 1 + T \)
good5 \( 1 - T + p T^{2} \)
7 \( 1 - 3 T + p T^{2} \)
11 \( 1 - 5 T + p T^{2} \)
13 \( 1 + 2 T + p T^{2} \)
17 \( 1 + T + p T^{2} \)
23 \( 1 + 4 T + p T^{2} \)
29 \( 1 + 6 T + p T^{2} \)
31 \( 1 - 10 T + p T^{2} \)
37 \( 1 + p T^{2} \)
41 \( 1 + p T^{2} \)
43 \( 1 - 11 T + p T^{2} \)
47 \( 1 + 9 T + p T^{2} \)
53 \( 1 - 10 T + p T^{2} \)
59 \( 1 + 4 T + p T^{2} \)
61 \( 1 + 5 T + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 + 8 T + p T^{2} \)
73 \( 1 - 13 T + p T^{2} \)
79 \( 1 + 4 T + p T^{2} \)
83 \( 1 - 4 T + p T^{2} \)
89 \( 1 + 6 T + p T^{2} \)
97 \( 1 - 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.862164061284988560127703607761, −9.311855058818112000677027390123, −8.401283813328142066772197058504, −7.71746462671777987376282810646, −6.70763943434327514300682563553, −5.79207335364227802466519929408, −4.59304960512664828445847886100, −3.88422121963892273963994554094, −2.37370475846756124705838442419, −1.45577057780807819268618768683, 1.45577057780807819268618768683, 2.37370475846756124705838442419, 3.88422121963892273963994554094, 4.59304960512664828445847886100, 5.79207335364227802466519929408, 6.70763943434327514300682563553, 7.71746462671777987376282810646, 8.401283813328142066772197058504, 9.311855058818112000677027390123, 9.862164061284988560127703607761

Graph of the $Z$-function along the critical line