Properties

Label 2-91035-1.1-c1-0-41
Degree $2$
Conductor $91035$
Sign $-1$
Analytic cond. $726.918$
Root an. cond. $26.9614$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 2·4-s − 5-s − 7-s − 2·10-s + 3·11-s − 6·13-s − 2·14-s − 4·16-s − 19-s − 2·20-s + 6·22-s + 25-s − 12·26-s − 2·28-s − 5·29-s + 8·31-s − 8·32-s + 35-s − 2·37-s − 2·38-s + 5·41-s + 4·43-s + 6·44-s + 49-s + 2·50-s − 12·52-s + ⋯
L(s)  = 1  + 1.41·2-s + 4-s − 0.447·5-s − 0.377·7-s − 0.632·10-s + 0.904·11-s − 1.66·13-s − 0.534·14-s − 16-s − 0.229·19-s − 0.447·20-s + 1.27·22-s + 1/5·25-s − 2.35·26-s − 0.377·28-s − 0.928·29-s + 1.43·31-s − 1.41·32-s + 0.169·35-s − 0.328·37-s − 0.324·38-s + 0.780·41-s + 0.609·43-s + 0.904·44-s + 1/7·49-s + 0.282·50-s − 1.66·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 91035 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 91035 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(91035\)    =    \(3^{2} \cdot 5 \cdot 7 \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(726.918\)
Root analytic conductor: \(26.9614\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 91035,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + T \)
7 \( 1 + T \)
17 \( 1 \)
good2 \( 1 - p T + p T^{2} \)
11 \( 1 - 3 T + p T^{2} \)
13 \( 1 + 6 T + p T^{2} \)
19 \( 1 + T + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 + 5 T + p T^{2} \)
31 \( 1 - 8 T + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 - 5 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 - 4 T + p T^{2} \)
59 \( 1 + 9 T + p T^{2} \)
61 \( 1 - 11 T + p T^{2} \)
67 \( 1 + 6 T + p T^{2} \)
71 \( 1 - 15 T + p T^{2} \)
73 \( 1 + 4 T + p T^{2} \)
79 \( 1 + T + p T^{2} \)
83 \( 1 - 6 T + p T^{2} \)
89 \( 1 - 9 T + p T^{2} \)
97 \( 1 + 4 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.11405925737791, −13.68376050787083, −13.05042547110452, −12.63168565938630, −12.17609549374881, −11.93025078954172, −11.37820709159872, −10.88669355449627, −10.10698155759580, −9.693108040448747, −9.107184775898363, −8.709113275413110, −7.794893723507855, −7.432379373319231, −6.785012935076906, −6.410763237958968, −5.844824784293856, −5.154656760428185, −4.776264075956214, −4.138436437278321, −3.813945127540209, −3.094594417061698, −2.543185443658564, −2.010274420913059, −0.8710955061710361, 0, 0.8710955061710361, 2.010274420913059, 2.543185443658564, 3.094594417061698, 3.813945127540209, 4.138436437278321, 4.776264075956214, 5.154656760428185, 5.844824784293856, 6.410763237958968, 6.785012935076906, 7.432379373319231, 7.794893723507855, 8.709113275413110, 9.107184775898363, 9.693108040448747, 10.10698155759580, 10.88669355449627, 11.37820709159872, 11.93025078954172, 12.17609549374881, 12.63168565938630, 13.05042547110452, 13.68376050787083, 14.11405925737791

Graph of the $Z$-function along the critical line