# Properties

 Label 2-91-91.51-c1-0-7 Degree $2$ Conductor $91$ Sign $-0.695 - 0.718i$ Analytic cond. $0.726638$ Root an. cond. $0.852431$ Motivic weight $1$ Arithmetic yes Rational no Primitive yes Self-dual no Analytic rank $0$

# Learn more

## Dirichlet series

 L(s)  = 1 + (−1.97 − 1.14i)2-s + (−1.57 − 2.72i)3-s + (1.61 + 2.78i)4-s + (−1.84 − 1.06i)5-s + 7.19i·6-s + (2.62 − 0.331i)7-s − 2.78i·8-s + (−3.46 + 5.99i)9-s + (2.42 + 4.20i)10-s + (−0.267 + 0.154i)11-s + (5.07 − 8.78i)12-s + (−3.22 − 1.62i)13-s + (−5.57 − 2.34i)14-s + 6.69i·15-s + (0.0349 − 0.0605i)16-s + (−0.887 − 1.53i)17-s + ⋯
 L(s)  = 1 + (−1.39 − 0.807i)2-s + (−0.909 − 1.57i)3-s + (0.805 + 1.39i)4-s + (−0.823 − 0.475i)5-s + 2.93i·6-s + (0.992 − 0.125i)7-s − 0.985i·8-s + (−1.15 + 1.99i)9-s + (0.767 + 1.32i)10-s + (−0.0805 + 0.0465i)11-s + (1.46 − 2.53i)12-s + (−0.893 − 0.449i)13-s + (−1.48 − 0.626i)14-s + 1.72i·15-s + (0.00874 − 0.0151i)16-s + (−0.215 − 0.372i)17-s + ⋯

## Functional equation

\begin{aligned}\Lambda(s)=\mathstrut & 91 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.695 - 0.718i)\, \overline{\Lambda}(2-s) \end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut & 91 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.695 - 0.718i)\, \overline{\Lambda}(1-s) \end{aligned}

## Invariants

 Degree: $$2$$ Conductor: $$91$$    =    $$7 \cdot 13$$ Sign: $-0.695 - 0.718i$ Analytic conductor: $$0.726638$$ Root analytic conductor: $$0.852431$$ Motivic weight: $$1$$ Rational: no Arithmetic: yes Character: $\chi_{91} (51, \cdot )$ Primitive: yes Self-dual: no Analytic rank: $$0$$ Selberg data: $$(2,\ 91,\ (\ :1/2),\ -0.695 - 0.718i)$$

## Particular Values

 $$L(1)$$ $$\approx$$ $$0.0935059 + 0.220858i$$ $$L(\frac12)$$ $$\approx$$ $$0.0935059 + 0.220858i$$ $$L(\frac{3}{2})$$ not available $$L(1)$$ not available

## Euler product

$$L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}$$
$p$$F_p(T)$
bad7 $$1 + (-2.62 + 0.331i)T$$
13 $$1 + (3.22 + 1.62i)T$$
good2 $$1 + (1.97 + 1.14i)T + (1 + 1.73i)T^{2}$$
3 $$1 + (1.57 + 2.72i)T + (-1.5 + 2.59i)T^{2}$$
5 $$1 + (1.84 + 1.06i)T + (2.5 + 4.33i)T^{2}$$
11 $$1 + (0.267 - 0.154i)T + (5.5 - 9.52i)T^{2}$$
17 $$1 + (0.887 + 1.53i)T + (-8.5 + 14.7i)T^{2}$$
19 $$1 + (1.54 + 0.890i)T + (9.5 + 16.4i)T^{2}$$
23 $$1 + (-0.575 + 0.996i)T + (-11.5 - 19.9i)T^{2}$$
29 $$1 - 2.01T + 29T^{2}$$
31 $$1 + (3.98 - 2.30i)T + (15.5 - 26.8i)T^{2}$$
37 $$1 + (4.79 + 2.77i)T + (18.5 + 32.0i)T^{2}$$
41 $$1 + 6.72iT - 41T^{2}$$
43 $$1 + 1.52T + 43T^{2}$$
47 $$1 + (-8.24 - 4.75i)T + (23.5 + 40.7i)T^{2}$$
53 $$1 + (3.72 + 6.44i)T + (-26.5 + 45.8i)T^{2}$$
59 $$1 + (-7.03 + 4.06i)T + (29.5 - 51.0i)T^{2}$$
61 $$1 + (-1.72 + 2.97i)T + (-30.5 - 52.8i)T^{2}$$
67 $$1 + (-10.9 + 6.30i)T + (33.5 - 58.0i)T^{2}$$
71 $$1 + 1.35iT - 71T^{2}$$
73 $$1 + (10.2 - 5.94i)T + (36.5 - 63.2i)T^{2}$$
79 $$1 + (-3.96 + 6.86i)T + (-39.5 - 68.4i)T^{2}$$
83 $$1 + 11.2iT - 83T^{2}$$
89 $$1 + (1.43 + 0.829i)T + (44.5 + 77.0i)T^{2}$$
97 $$1 + 7.66iT - 97T^{2}$$
show more
show less
$$L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}$$

## Imaginary part of the first few zeros on the critical line

−12.71882779691763632283957339050, −12.07620807063449957660975116230, −11.37169116678873163179038898205, −10.52800103623174862627226967363, −8.688265658914622979385461800110, −7.83578515051761164202203797217, −7.14448470408302776255186859144, −5.13240259690263190437673408152, −2.09050588412364098663800617053, −0.50021622570622079972071439271, 4.15645416054321842892882926793, 5.51297583246194646429381785208, 6.98108708132668289216333721760, 8.242690799041873408724823606066, 9.326533230173542393602306970810, 10.35026104963766537936659286930, 11.08558031731229090608118847061, 11.92261394369353858914981226122, 14.65390829121163923988435903206, 15.14338861842581494661291855189