L(s) = 1 | + (−0.320 + 1.19i)2-s − 2.22i·3-s + (0.401 + 0.231i)4-s + (−0.674 − 2.51i)5-s + (2.66 + 0.713i)6-s + (2.64 − 0.170i)7-s + (−2.15 + 2.15i)8-s − 1.95·9-s + 3.22·10-s + (−0.999 + 0.999i)11-s + (0.515 − 0.893i)12-s + (−0.445 + 3.57i)13-s + (−0.642 + 3.21i)14-s + (−5.60 + 1.50i)15-s + (−1.42 − 2.47i)16-s + (1.41 − 2.44i)17-s + ⋯ |
L(s) = 1 | + (−0.226 + 0.846i)2-s − 1.28i·3-s + (0.200 + 0.115i)4-s + (−0.301 − 1.12i)5-s + (1.08 + 0.291i)6-s + (0.997 − 0.0646i)7-s + (−0.763 + 0.763i)8-s − 0.650·9-s + 1.02·10-s + (−0.301 + 0.301i)11-s + (0.148 − 0.257i)12-s + (−0.123 + 0.992i)13-s + (−0.171 + 0.859i)14-s + (−1.44 + 0.387i)15-s + (−0.357 − 0.618i)16-s + (0.342 − 0.594i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 91 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.987 + 0.159i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 91 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.987 + 0.159i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.961252 - 0.0771079i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.961252 - 0.0771079i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 + (-2.64 + 0.170i)T \) |
| 13 | \( 1 + (0.445 - 3.57i)T \) |
good | 2 | \( 1 + (0.320 - 1.19i)T + (-1.73 - i)T^{2} \) |
| 3 | \( 1 + 2.22iT - 3T^{2} \) |
| 5 | \( 1 + (0.674 + 2.51i)T + (-4.33 + 2.5i)T^{2} \) |
| 11 | \( 1 + (0.999 - 0.999i)T - 11iT^{2} \) |
| 17 | \( 1 + (-1.41 + 2.44i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (4.42 - 4.42i)T - 19iT^{2} \) |
| 23 | \( 1 + (-0.882 + 0.509i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (2.66 - 4.61i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (6.46 + 1.73i)T + (26.8 + 15.5i)T^{2} \) |
| 37 | \( 1 + (-8.89 - 2.38i)T + (32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 + (-2.51 - 9.40i)T + (-35.5 + 20.5i)T^{2} \) |
| 43 | \( 1 + (-0.850 + 0.490i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-2.21 + 0.594i)T + (40.7 - 23.5i)T^{2} \) |
| 53 | \( 1 + (2.52 + 4.38i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (7.36 - 1.97i)T + (51.0 - 29.5i)T^{2} \) |
| 61 | \( 1 + 7.79iT - 61T^{2} \) |
| 67 | \( 1 + (9.24 + 9.24i)T + 67iT^{2} \) |
| 71 | \( 1 + (-2.97 + 11.0i)T + (-61.4 - 35.5i)T^{2} \) |
| 73 | \( 1 + (-2.26 + 8.43i)T + (-63.2 - 36.5i)T^{2} \) |
| 79 | \( 1 + (2.78 - 4.82i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-0.445 + 0.445i)T - 83iT^{2} \) |
| 89 | \( 1 + (0.0396 - 0.147i)T + (-77.0 - 44.5i)T^{2} \) |
| 97 | \( 1 + (-2.87 - 0.771i)T + (84.0 + 48.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.18597436724143842968268133622, −12.84072368205332442991208977469, −12.17649108103032175186192127746, −11.24750235752437058060872594688, −9.082713498970969351334241829830, −8.024352560088550979020632076497, −7.50213577608170640480123288783, −6.23000728344387800852529986882, −4.76204783357436630618670976074, −1.82189531788184256964631003223,
2.69503555945678813990979353663, 4.01897820423653832964321216491, 5.70426634851519864414704704171, 7.42908274599702584636567178522, 8.978665819949803638846910747361, 10.28781507913841766451829646000, 10.82881761161483313369508275718, 11.31883949127323044049086156920, 12.81957577005967696451825873339, 14.62806726776034173268531732479