Properties

Label 2-91-91.30-c1-0-3
Degree $2$
Conductor $91$
Sign $0.993 - 0.115i$
Analytic cond. $0.726638$
Root an. cond. $0.852431$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.433 − 0.249i)2-s + 0.849·3-s + (−0.875 + 1.51i)4-s + (0.902 + 0.521i)5-s + (0.367 − 0.212i)6-s + (1.52 − 2.16i)7-s + 1.87i·8-s − 2.27·9-s + 0.521·10-s − 3.96i·11-s + (−0.743 + 1.28i)12-s + (−3.57 + 0.468i)13-s + (0.119 − 1.31i)14-s + (0.767 + 0.442i)15-s + (−1.28 − 2.21i)16-s + (−0.0710 + 0.123i)17-s + ⋯
L(s)  = 1  + (0.306 − 0.176i)2-s + 0.490·3-s + (−0.437 + 0.757i)4-s + (0.403 + 0.233i)5-s + (0.150 − 0.0867i)6-s + (0.576 − 0.817i)7-s + 0.662i·8-s − 0.759·9-s + 0.164·10-s − 1.19i·11-s + (−0.214 + 0.371i)12-s + (−0.991 + 0.129i)13-s + (0.0319 − 0.352i)14-s + (0.198 + 0.114i)15-s + (−0.320 − 0.554i)16-s + (−0.0172 + 0.0298i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 91 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.993 - 0.115i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 91 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.993 - 0.115i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(91\)    =    \(7 \cdot 13\)
Sign: $0.993 - 0.115i$
Analytic conductor: \(0.726638\)
Root analytic conductor: \(0.852431\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{91} (30, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 91,\ (\ :1/2),\ 0.993 - 0.115i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.21226 + 0.0702823i\)
\(L(\frac12)\) \(\approx\) \(1.21226 + 0.0702823i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 + (-1.52 + 2.16i)T \)
13 \( 1 + (3.57 - 0.468i)T \)
good2 \( 1 + (-0.433 + 0.249i)T + (1 - 1.73i)T^{2} \)
3 \( 1 - 0.849T + 3T^{2} \)
5 \( 1 + (-0.902 - 0.521i)T + (2.5 + 4.33i)T^{2} \)
11 \( 1 + 3.96iT - 11T^{2} \)
17 \( 1 + (0.0710 - 0.123i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 - 5.50iT - 19T^{2} \)
23 \( 1 + (-2.19 - 3.80i)T + (-11.5 + 19.9i)T^{2} \)
29 \( 1 + (-4.19 + 7.27i)T + (-14.5 - 25.1i)T^{2} \)
31 \( 1 + (2.46 - 1.42i)T + (15.5 - 26.8i)T^{2} \)
37 \( 1 + (0.730 - 0.421i)T + (18.5 - 32.0i)T^{2} \)
41 \( 1 + (-10.4 - 6.04i)T + (20.5 + 35.5i)T^{2} \)
43 \( 1 + (-2.41 - 4.17i)T + (-21.5 + 37.2i)T^{2} \)
47 \( 1 + (-3.94 - 2.27i)T + (23.5 + 40.7i)T^{2} \)
53 \( 1 + (-0.139 - 0.242i)T + (-26.5 + 45.8i)T^{2} \)
59 \( 1 + (-9.33 - 5.39i)T + (29.5 + 51.0i)T^{2} \)
61 \( 1 + 5.86T + 61T^{2} \)
67 \( 1 + 5.14iT - 67T^{2} \)
71 \( 1 + (3.20 - 1.84i)T + (35.5 - 61.4i)T^{2} \)
73 \( 1 + (5.72 - 3.30i)T + (36.5 - 63.2i)T^{2} \)
79 \( 1 + (5.96 - 10.3i)T + (-39.5 - 68.4i)T^{2} \)
83 \( 1 + 2.87iT - 83T^{2} \)
89 \( 1 + (-1.51 + 0.873i)T + (44.5 - 77.0i)T^{2} \)
97 \( 1 + (-2.34 + 1.35i)T + (48.5 - 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.07955221632452152776973397925, −13.35969018047699473883803268454, −11.99978652547209616131603300567, −11.06958307802698981048346846972, −9.676262164575343614990283279660, −8.377620190228871294868720425077, −7.65004721109226612947758442147, −5.75978933983315880303652881127, −4.15216087451499891441603542008, −2.79331805491890263006947209182, 2.33905274053670109550758958119, 4.73061555192509459166893883539, 5.55486532348829709743282646420, 7.17567168093945989337404365645, 8.847545030697266292540607722332, 9.407419503724157631670462523899, 10.74811519971035740621735337303, 12.18383640408745739093234152178, 13.15948286383251874899440965701, 14.40537488653370809900218592934

Graph of the $Z$-function along the critical line