Properties

Label 2-91-91.23-c1-0-2
Degree $2$
Conductor $91$
Sign $0.978 + 0.207i$
Analytic cond. $0.726638$
Root an. cond. $0.852431$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.34i·2-s + (−1.02 + 1.77i)3-s + 0.190·4-s + (3.08 + 1.78i)5-s + (2.38 + 1.37i)6-s + (−2.44 − 1.00i)7-s − 2.94i·8-s + (−0.601 − 1.04i)9-s + (2.39 − 4.15i)10-s + (−1.10 − 0.639i)11-s + (−0.195 + 0.337i)12-s + (3.57 − 0.474i)13-s + (−1.35 + 3.29i)14-s + (−6.33 + 3.65i)15-s − 3.58·16-s − 7.73·17-s + ⋯
L(s)  = 1  − 0.951i·2-s + (−0.591 + 1.02i)3-s + 0.0951·4-s + (1.38 + 0.797i)5-s + (0.975 + 0.562i)6-s + (−0.924 − 0.381i)7-s − 1.04i·8-s + (−0.200 − 0.347i)9-s + (0.758 − 1.31i)10-s + (−0.333 − 0.192i)11-s + (−0.0563 + 0.0975i)12-s + (0.991 − 0.131i)13-s + (−0.362 + 0.879i)14-s + (−1.63 + 0.944i)15-s − 0.895·16-s − 1.87·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 91 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.978 + 0.207i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 91 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.978 + 0.207i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(91\)    =    \(7 \cdot 13\)
Sign: $0.978 + 0.207i$
Analytic conductor: \(0.726638\)
Root analytic conductor: \(0.852431\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{91} (23, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 91,\ (\ :1/2),\ 0.978 + 0.207i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.00827 - 0.105512i\)
\(L(\frac12)\) \(\approx\) \(1.00827 - 0.105512i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 + (2.44 + 1.00i)T \)
13 \( 1 + (-3.57 + 0.474i)T \)
good2 \( 1 + 1.34iT - 2T^{2} \)
3 \( 1 + (1.02 - 1.77i)T + (-1.5 - 2.59i)T^{2} \)
5 \( 1 + (-3.08 - 1.78i)T + (2.5 + 4.33i)T^{2} \)
11 \( 1 + (1.10 + 0.639i)T + (5.5 + 9.52i)T^{2} \)
17 \( 1 + 7.73T + 17T^{2} \)
19 \( 1 + (-0.817 + 0.471i)T + (9.5 - 16.4i)T^{2} \)
23 \( 1 + 1.64T + 23T^{2} \)
29 \( 1 + (2.02 + 3.50i)T + (-14.5 + 25.1i)T^{2} \)
31 \( 1 + (-4.46 + 2.57i)T + (15.5 - 26.8i)T^{2} \)
37 \( 1 + 1.05iT - 37T^{2} \)
41 \( 1 + (3.63 - 2.09i)T + (20.5 - 35.5i)T^{2} \)
43 \( 1 + (-1.91 + 3.31i)T + (-21.5 - 37.2i)T^{2} \)
47 \( 1 + (-0.774 - 0.447i)T + (23.5 + 40.7i)T^{2} \)
53 \( 1 + (-0.0399 - 0.0692i)T + (-26.5 + 45.8i)T^{2} \)
59 \( 1 - 11.1iT - 59T^{2} \)
61 \( 1 + (-3.81 - 6.60i)T + (-30.5 + 52.8i)T^{2} \)
67 \( 1 + (-5.47 - 3.16i)T + (33.5 + 58.0i)T^{2} \)
71 \( 1 + (-9.89 - 5.71i)T + (35.5 + 61.4i)T^{2} \)
73 \( 1 + (-0.658 + 0.380i)T + (36.5 - 63.2i)T^{2} \)
79 \( 1 + (-1.42 + 2.47i)T + (-39.5 - 68.4i)T^{2} \)
83 \( 1 - 2.32iT - 83T^{2} \)
89 \( 1 + 7.57iT - 89T^{2} \)
97 \( 1 + (0.414 + 0.239i)T + (48.5 + 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.56342227544880503438459758459, −13.20116698633857230006912936007, −11.42879079674839048296064501369, −10.65846087884745674335167918857, −10.14402660686812818574045701141, −9.283899279345156254858956074495, −6.74073050418529605802363723009, −5.90320692866640025924775161771, −3.98474407140208452410106251378, −2.49236745136808444183187113798, 2.01020331761217424593089926431, 5.28908357404866682653632568992, 6.31295892817114879717802869343, 6.70313686942708721026070391838, 8.424009535353853819333600852407, 9.456472371352345130244845474237, 11.02714053215349499445358849360, 12.36804086327708484458608492270, 13.20248633330450587488642371985, 13.81241619090311161833155820063

Graph of the $Z$-function along the critical line