Properties

Label 2-91-91.16-c1-0-4
Degree $2$
Conductor $91$
Sign $0.602 + 0.798i$
Analytic cond. $0.726638$
Root an. cond. $0.852431$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.268·2-s + (0.571 − 0.989i)3-s − 1.92·4-s + (1.28 − 2.21i)5-s + (−0.153 + 0.265i)6-s + (1.80 − 1.93i)7-s + 1.05·8-s + (0.846 + 1.46i)9-s + (−0.343 + 0.594i)10-s + (−1.97 + 3.41i)11-s + (−1.10 + 1.90i)12-s + (−3.15 − 1.74i)13-s + (−0.483 + 0.518i)14-s + (−1.46 − 2.53i)15-s + 3.57·16-s + 0.785·17-s + ⋯
L(s)  = 1  − 0.189·2-s + (0.329 − 0.571i)3-s − 0.964·4-s + (0.572 − 0.992i)5-s + (−0.0625 + 0.108i)6-s + (0.681 − 0.731i)7-s + 0.372·8-s + (0.282 + 0.488i)9-s + (−0.108 + 0.188i)10-s + (−0.594 + 1.03i)11-s + (−0.318 + 0.550i)12-s + (−0.874 − 0.484i)13-s + (−0.129 + 0.138i)14-s + (−0.378 − 0.654i)15-s + 0.893·16-s + 0.190·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 91 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.602 + 0.798i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 91 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.602 + 0.798i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(91\)    =    \(7 \cdot 13\)
Sign: $0.602 + 0.798i$
Analytic conductor: \(0.726638\)
Root analytic conductor: \(0.852431\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{91} (16, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 91,\ (\ :1/2),\ 0.602 + 0.798i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.828708 - 0.413053i\)
\(L(\frac12)\) \(\approx\) \(0.828708 - 0.413053i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 + (-1.80 + 1.93i)T \)
13 \( 1 + (3.15 + 1.74i)T \)
good2 \( 1 + 0.268T + 2T^{2} \)
3 \( 1 + (-0.571 + 0.989i)T + (-1.5 - 2.59i)T^{2} \)
5 \( 1 + (-1.28 + 2.21i)T + (-2.5 - 4.33i)T^{2} \)
11 \( 1 + (1.97 - 3.41i)T + (-5.5 - 9.52i)T^{2} \)
17 \( 1 - 0.785T + 17T^{2} \)
19 \( 1 + (-3.74 - 6.49i)T + (-9.5 + 16.4i)T^{2} \)
23 \( 1 + 7.95T + 23T^{2} \)
29 \( 1 + (1.17 + 2.03i)T + (-14.5 + 25.1i)T^{2} \)
31 \( 1 + (-1.27 - 2.21i)T + (-15.5 + 26.8i)T^{2} \)
37 \( 1 - 6.75T + 37T^{2} \)
41 \( 1 + (-1.21 - 2.11i)T + (-20.5 + 35.5i)T^{2} \)
43 \( 1 + (-1.12 + 1.94i)T + (-21.5 - 37.2i)T^{2} \)
47 \( 1 + (0.658 - 1.14i)T + (-23.5 - 40.7i)T^{2} \)
53 \( 1 + (4.63 + 8.03i)T + (-26.5 + 45.8i)T^{2} \)
59 \( 1 + 8.96T + 59T^{2} \)
61 \( 1 + (4.72 + 8.18i)T + (-30.5 + 52.8i)T^{2} \)
67 \( 1 + (-0.676 + 1.17i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 + (6.15 - 10.6i)T + (-35.5 - 61.4i)T^{2} \)
73 \( 1 + (0.384 + 0.665i)T + (-36.5 + 63.2i)T^{2} \)
79 \( 1 + (3.09 - 5.36i)T + (-39.5 - 68.4i)T^{2} \)
83 \( 1 + 1.07T + 83T^{2} \)
89 \( 1 - 7.66T + 89T^{2} \)
97 \( 1 + (-1.18 + 2.05i)T + (-48.5 - 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.84389974435459931023010014142, −12.94959178670275455080497563019, −12.28495178827761896817550803731, −10.21357259771832441486613656934, −9.692418898739610595710082534028, −8.010762927816694926408780967973, −7.73161417736183810967779246323, −5.36097123867070531769312766878, −4.44274701910350009850597901794, −1.62808694153426080522566773291, 2.87269774456217944358029465116, 4.59538770372467674838971163489, 5.94441765064371907390704234184, 7.69822977920066813683498807627, 9.003898392729008372515682562890, 9.716956319428040807631666517085, 10.77234350650402327647341572402, 12.06495297127823811831190490385, 13.56809757585358019526642401355, 14.28401965928118470695504249070

Graph of the $Z$-function along the critical line