| L(s) = 1 | + (0.190 − 0.330i)2-s + (−1.11 − 1.93i)3-s + (0.927 + 1.60i)4-s + (1.11 − 1.93i)5-s − 0.854·6-s + (−2 − 1.73i)7-s + 1.47·8-s + (−1 + 1.73i)9-s + (−0.427 − 0.739i)10-s + (1.5 + 2.59i)11-s + (2.07 − 3.59i)12-s − 13-s + (−0.954 + 0.330i)14-s − 5.00·15-s + (−1.57 + 2.72i)16-s + (3.73 + 6.47i)17-s + ⋯ |
| L(s) = 1 | + (0.135 − 0.233i)2-s + (−0.645 − 1.11i)3-s + (0.463 + 0.802i)4-s + (0.499 − 0.866i)5-s − 0.348·6-s + (−0.755 − 0.654i)7-s + 0.520·8-s + (−0.333 + 0.577i)9-s + (−0.135 − 0.233i)10-s + (0.452 + 0.783i)11-s + (0.598 − 1.03i)12-s − 0.277·13-s + (−0.255 + 0.0884i)14-s − 1.29·15-s + (−0.393 + 0.681i)16-s + (0.906 + 1.56i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 91 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.386 + 0.922i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 91 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.386 + 0.922i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.821157 - 0.546219i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.821157 - 0.546219i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 7 | \( 1 + (2 + 1.73i)T \) |
| 13 | \( 1 + T \) |
| good | 2 | \( 1 + (-0.190 + 0.330i)T + (-1 - 1.73i)T^{2} \) |
| 3 | \( 1 + (1.11 + 1.93i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + (-1.11 + 1.93i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-1.5 - 2.59i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-3.73 - 6.47i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (1.5 - 2.59i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-1.88 + 3.25i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 4.47T + 29T^{2} \) |
| 31 | \( 1 + (2.5 + 4.33i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-4.35 + 7.54i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 - 4.47T + 41T^{2} \) |
| 43 | \( 1 + 8T + 43T^{2} \) |
| 47 | \( 1 + (0.736 - 1.27i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (0.736 + 1.27i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (3.73 + 6.47i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (1.5 - 2.59i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.5 - 2.59i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 8.94T + 71T^{2} \) |
| 73 | \( 1 + (5.35 + 9.27i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (5.35 - 9.27i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 83T^{2} \) |
| 89 | \( 1 + (-1.11 + 1.93i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 17.4T + 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.21773273479029602439484288605, −12.68174269319074604724993730510, −12.30857092311281099427437521250, −10.91420614036800776582806184832, −9.576703550189450260791544118253, −7.974674709273874811639719904103, −6.98263698841547473536537244743, −5.94049446538056836979371913842, −3.97646047461772695807843743915, −1.69057622283079173193073362078,
3.00255312100191105218792907301, 5.09779491066717041247569614310, 5.96738277904419845478407978227, 7.00073560932273874586189697192, 9.365255247777837370764012818202, 9.963985434852701662601982436292, 10.98317839457928490395678231713, 11.71978116591483988392727164869, 13.54874918285554397979028465060, 14.56454761009922008723439693998