L(s) = 1 | + (1.37 − 2.37i)2-s + (−0.682 + 1.18i)3-s + (−2.75 − 4.77i)4-s + 0.741·5-s + (1.87 + 3.23i)6-s + (0.5 + 0.866i)7-s − 9.63·8-s + (0.568 + 0.984i)9-s + (1.01 − 1.75i)10-s + (0.682 − 1.18i)11-s + 7.52·12-s + (0.301 + 3.59i)13-s + 2.74·14-s + (−0.505 + 0.875i)15-s + (−7.68 + 13.3i)16-s + (2.07 + 3.59i)17-s + ⋯ |
L(s) = 1 | + (0.969 − 1.67i)2-s + (−0.393 + 0.682i)3-s + (−1.37 − 2.38i)4-s + 0.331·5-s + (0.763 + 1.32i)6-s + (0.188 + 0.327i)7-s − 3.40·8-s + (0.189 + 0.328i)9-s + (0.321 − 0.556i)10-s + (0.205 − 0.356i)11-s + 2.17·12-s + (0.0837 + 0.996i)13-s + 0.732·14-s + (−0.130 + 0.226i)15-s + (−1.92 + 3.32i)16-s + (0.503 + 0.871i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 91 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.183 + 0.983i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 91 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.183 + 0.983i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.843394 - 1.01522i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.843394 - 1.01522i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 + (-0.5 - 0.866i)T \) |
| 13 | \( 1 + (-0.301 - 3.59i)T \) |
good | 2 | \( 1 + (-1.37 + 2.37i)T + (-1 - 1.73i)T^{2} \) |
| 3 | \( 1 + (0.682 - 1.18i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 - 0.741T + 5T^{2} \) |
| 11 | \( 1 + (-0.682 + 1.18i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (-2.07 - 3.59i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (3.63 + 6.29i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-1.16 + 2.02i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-0.203 + 0.353i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 2.77T + 31T^{2} \) |
| 37 | \( 1 + (-3.05 + 5.28i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (0.627 - 1.08i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-0.870 - 1.50i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 5.85T + 47T^{2} \) |
| 53 | \( 1 - 4.56T + 53T^{2} \) |
| 59 | \( 1 + (-5.49 - 9.51i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (3.26 + 5.65i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-6.87 + 11.9i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-2.40 - 4.17i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 - 6.06T + 73T^{2} \) |
| 79 | \( 1 + 9.12T + 79T^{2} \) |
| 83 | \( 1 - 11.7T + 83T^{2} \) |
| 89 | \( 1 + (-0.880 + 1.52i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (4.76 + 8.25i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.53327415326027890108773734179, −12.67285821759755872885701101758, −11.45472148396085935432940401502, −10.90993065617732156947813774452, −9.887294130874420909763038492984, −8.932890784200642406622662569011, −6.11572720273219881002523338681, −4.93616531731032894769853046186, −3.94484141228716150011905692849, −2.10921035800543073282570783096,
3.76989902692039234658638743764, 5.34043556153575592319343271103, 6.26577511137234972210479521632, 7.30128235171785117719689606894, 8.153719180867900801146071408757, 9.742634689799937751570946455503, 11.84971749814349828662481671324, 12.70740277457913495694297792110, 13.44196758512014609865290821627, 14.47370370590669767144398984791