Properties

Label 2-91-13.9-c1-0-7
Degree $2$
Conductor $91$
Sign $-0.183 + 0.983i$
Analytic cond. $0.726638$
Root an. cond. $0.852431$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.37 − 2.37i)2-s + (−0.682 + 1.18i)3-s + (−2.75 − 4.77i)4-s + 0.741·5-s + (1.87 + 3.23i)6-s + (0.5 + 0.866i)7-s − 9.63·8-s + (0.568 + 0.984i)9-s + (1.01 − 1.75i)10-s + (0.682 − 1.18i)11-s + 7.52·12-s + (0.301 + 3.59i)13-s + 2.74·14-s + (−0.505 + 0.875i)15-s + (−7.68 + 13.3i)16-s + (2.07 + 3.59i)17-s + ⋯
L(s)  = 1  + (0.969 − 1.67i)2-s + (−0.393 + 0.682i)3-s + (−1.37 − 2.38i)4-s + 0.331·5-s + (0.763 + 1.32i)6-s + (0.188 + 0.327i)7-s − 3.40·8-s + (0.189 + 0.328i)9-s + (0.321 − 0.556i)10-s + (0.205 − 0.356i)11-s + 2.17·12-s + (0.0837 + 0.996i)13-s + 0.732·14-s + (−0.130 + 0.226i)15-s + (−1.92 + 3.32i)16-s + (0.503 + 0.871i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 91 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.183 + 0.983i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 91 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.183 + 0.983i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(91\)    =    \(7 \cdot 13\)
Sign: $-0.183 + 0.983i$
Analytic conductor: \(0.726638\)
Root analytic conductor: \(0.852431\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{91} (22, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 91,\ (\ :1/2),\ -0.183 + 0.983i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.843394 - 1.01522i\)
\(L(\frac12)\) \(\approx\) \(0.843394 - 1.01522i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 + (-0.5 - 0.866i)T \)
13 \( 1 + (-0.301 - 3.59i)T \)
good2 \( 1 + (-1.37 + 2.37i)T + (-1 - 1.73i)T^{2} \)
3 \( 1 + (0.682 - 1.18i)T + (-1.5 - 2.59i)T^{2} \)
5 \( 1 - 0.741T + 5T^{2} \)
11 \( 1 + (-0.682 + 1.18i)T + (-5.5 - 9.52i)T^{2} \)
17 \( 1 + (-2.07 - 3.59i)T + (-8.5 + 14.7i)T^{2} \)
19 \( 1 + (3.63 + 6.29i)T + (-9.5 + 16.4i)T^{2} \)
23 \( 1 + (-1.16 + 2.02i)T + (-11.5 - 19.9i)T^{2} \)
29 \( 1 + (-0.203 + 0.353i)T + (-14.5 - 25.1i)T^{2} \)
31 \( 1 + 2.77T + 31T^{2} \)
37 \( 1 + (-3.05 + 5.28i)T + (-18.5 - 32.0i)T^{2} \)
41 \( 1 + (0.627 - 1.08i)T + (-20.5 - 35.5i)T^{2} \)
43 \( 1 + (-0.870 - 1.50i)T + (-21.5 + 37.2i)T^{2} \)
47 \( 1 + 5.85T + 47T^{2} \)
53 \( 1 - 4.56T + 53T^{2} \)
59 \( 1 + (-5.49 - 9.51i)T + (-29.5 + 51.0i)T^{2} \)
61 \( 1 + (3.26 + 5.65i)T + (-30.5 + 52.8i)T^{2} \)
67 \( 1 + (-6.87 + 11.9i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 + (-2.40 - 4.17i)T + (-35.5 + 61.4i)T^{2} \)
73 \( 1 - 6.06T + 73T^{2} \)
79 \( 1 + 9.12T + 79T^{2} \)
83 \( 1 - 11.7T + 83T^{2} \)
89 \( 1 + (-0.880 + 1.52i)T + (-44.5 - 77.0i)T^{2} \)
97 \( 1 + (4.76 + 8.25i)T + (-48.5 + 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.53327415326027890108773734179, −12.67285821759755872885701101758, −11.45472148396085935432940401502, −10.90993065617732156947813774452, −9.887294130874420909763038492984, −8.932890784200642406622662569011, −6.11572720273219881002523338681, −4.93616531731032894769853046186, −3.94484141228716150011905692849, −2.10921035800543073282570783096, 3.76989902692039234658638743764, 5.34043556153575592319343271103, 6.26577511137234972210479521632, 7.30128235171785117719689606894, 8.153719180867900801146071408757, 9.742634689799937751570946455503, 11.84971749814349828662481671324, 12.70740277457913495694297792110, 13.44196758512014609865290821627, 14.47370370590669767144398984791

Graph of the $Z$-function along the critical line