L(s) = 1 | + (0.866 − 1.5i)2-s + (0.366 − 0.633i)3-s + (−0.5 − 0.866i)4-s − 1.73·5-s + (−0.633 − 1.09i)6-s + (−0.5 − 0.866i)7-s + 1.73·8-s + (1.23 + 2.13i)9-s + (−1.49 + 2.59i)10-s + (−2.36 + 4.09i)11-s − 0.732·12-s + (−1.59 − 3.23i)13-s − 1.73·14-s + (−0.633 + 1.09i)15-s + (2.49 − 4.33i)16-s + (2.13 + 3.69i)17-s + ⋯ |
L(s) = 1 | + (0.612 − 1.06i)2-s + (0.211 − 0.366i)3-s + (−0.250 − 0.433i)4-s − 0.774·5-s + (−0.258 − 0.448i)6-s + (−0.188 − 0.327i)7-s + 0.612·8-s + (0.410 + 0.711i)9-s + (−0.474 + 0.821i)10-s + (−0.713 + 1.23i)11-s − 0.211·12-s + (−0.443 − 0.896i)13-s − 0.462·14-s + (−0.163 + 0.283i)15-s + (0.624 − 1.08i)16-s + (0.517 + 0.896i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 91 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.189 + 0.981i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 91 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.189 + 0.981i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.990672 - 0.817482i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.990672 - 0.817482i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 + (0.5 + 0.866i)T \) |
| 13 | \( 1 + (1.59 + 3.23i)T \) |
good | 2 | \( 1 + (-0.866 + 1.5i)T + (-1 - 1.73i)T^{2} \) |
| 3 | \( 1 + (-0.366 + 0.633i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + 1.73T + 5T^{2} \) |
| 11 | \( 1 + (2.36 - 4.09i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (-2.13 - 3.69i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (1 + 1.73i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (0.633 - 1.09i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.5 + 2.59i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 6.19T + 31T^{2} \) |
| 37 | \( 1 + (-3.5 + 6.06i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (2.59 - 4.5i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (5.09 + 8.83i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 0.928T + 47T^{2} \) |
| 53 | \( 1 - 3.92T + 53T^{2} \) |
| 59 | \( 1 + (5.36 + 9.29i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-7.59 - 13.1i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (2.09 - 3.63i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (3 + 5.19i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 - 7.19T + 73T^{2} \) |
| 79 | \( 1 - 5.80T + 79T^{2} \) |
| 83 | \( 1 - 8.19T + 83T^{2} \) |
| 89 | \( 1 + (-0.464 + 0.803i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-7.19 - 12.4i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.32536340167557721342427635463, −12.80316833138061168411988829780, −11.98981485345654387406345439731, −10.69464968726998806775468811745, −10.04778944953097759754507823259, −7.907149105955935916610388692921, −7.36707189308310396421472832899, −5.02394607171507602611155640516, −3.79992588545711933676505352967, −2.20239267430026053557451768584,
3.52957957793634842374956169025, 4.87308718222571916877411924801, 6.20603939431763398514667040850, 7.36913073524405301302245032399, 8.489321419830709194583118338272, 9.848580526336600023353608529743, 11.24416137813438625121988054174, 12.38054621005926265129480445177, 13.63268696961314826551065625080, 14.54923954186050177500622965526