Properties

Label 2-91-13.10-c7-0-14
Degree $2$
Conductor $91$
Sign $-0.340 + 0.940i$
Analytic cond. $28.4270$
Root an. cond. $5.33170$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−3.66 + 2.11i)2-s + (31.3 + 54.3i)3-s + (−55.0 + 95.3i)4-s + 422. i·5-s + (−229. − 132. i)6-s + (−297. − 171.5i)7-s − 1.00e3i·8-s + (−873. + 1.51e3i)9-s + (−894. − 1.54e3i)10-s + (−5.39e3 + 3.11e3i)11-s − 6.90e3·12-s + (−2.59e3 + 7.48e3i)13-s + 1.45e3·14-s + (−2.29e4 + 1.32e4i)15-s + (−4.91e3 − 8.51e3i)16-s + (1.47e4 − 2.55e4i)17-s + ⋯
L(s)  = 1  + (−0.323 + 0.187i)2-s + (0.670 + 1.16i)3-s + (−0.430 + 0.744i)4-s + 1.51i·5-s + (−0.434 − 0.250i)6-s + (−0.327 − 0.188i)7-s − 0.695i·8-s + (−0.399 + 0.692i)9-s + (−0.282 − 0.489i)10-s + (−1.22 + 0.705i)11-s − 1.15·12-s + (−0.327 + 0.944i)13-s + 0.141·14-s + (−1.75 + 1.01i)15-s + (−0.299 − 0.519i)16-s + (0.729 − 1.26i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 91 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.340 + 0.940i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 91 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (-0.340 + 0.940i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(91\)    =    \(7 \cdot 13\)
Sign: $-0.340 + 0.940i$
Analytic conductor: \(28.4270\)
Root analytic conductor: \(5.33170\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: $\chi_{91} (36, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 91,\ (\ :7/2),\ -0.340 + 0.940i)\)

Particular Values

\(L(4)\) \(\approx\) \(0.710716 - 1.01273i\)
\(L(\frac12)\) \(\approx\) \(0.710716 - 1.01273i\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 + (297. + 171.5i)T \)
13 \( 1 + (2.59e3 - 7.48e3i)T \)
good2 \( 1 + (3.66 - 2.11i)T + (64 - 110. i)T^{2} \)
3 \( 1 + (-31.3 - 54.3i)T + (-1.09e3 + 1.89e3i)T^{2} \)
5 \( 1 - 422. iT - 7.81e4T^{2} \)
11 \( 1 + (5.39e3 - 3.11e3i)T + (9.74e6 - 1.68e7i)T^{2} \)
17 \( 1 + (-1.47e4 + 2.55e4i)T + (-2.05e8 - 3.55e8i)T^{2} \)
19 \( 1 + (-3.06e4 - 1.76e4i)T + (4.46e8 + 7.74e8i)T^{2} \)
23 \( 1 + (-3.89e4 - 6.74e4i)T + (-1.70e9 + 2.94e9i)T^{2} \)
29 \( 1 + (-2.89e4 - 5.01e4i)T + (-8.62e9 + 1.49e10i)T^{2} \)
31 \( 1 - 9.53e4iT - 2.75e10T^{2} \)
37 \( 1 + (2.06e3 - 1.19e3i)T + (4.74e10 - 8.22e10i)T^{2} \)
41 \( 1 + (-2.15e5 + 1.24e5i)T + (9.73e10 - 1.68e11i)T^{2} \)
43 \( 1 + (-3.06e5 + 5.30e5i)T + (-1.35e11 - 2.35e11i)T^{2} \)
47 \( 1 - 7.87e5iT - 5.06e11T^{2} \)
53 \( 1 + 1.74e6T + 1.17e12T^{2} \)
59 \( 1 + (2.45e6 + 1.41e6i)T + (1.24e12 + 2.15e12i)T^{2} \)
61 \( 1 + (-6.99e5 + 1.21e6i)T + (-1.57e12 - 2.72e12i)T^{2} \)
67 \( 1 + (-1.35e5 + 7.82e4i)T + (3.03e12 - 5.24e12i)T^{2} \)
71 \( 1 + (-4.31e6 - 2.49e6i)T + (4.54e12 + 7.87e12i)T^{2} \)
73 \( 1 + 1.27e6iT - 1.10e13T^{2} \)
79 \( 1 + 2.02e6T + 1.92e13T^{2} \)
83 \( 1 + 3.17e6iT - 2.71e13T^{2} \)
89 \( 1 + (-2.13e6 + 1.23e6i)T + (2.21e13 - 3.83e13i)T^{2} \)
97 \( 1 + (-9.16e6 - 5.28e6i)T + (4.03e13 + 6.99e13i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.86283840991270825669804955895, −12.31655078021517111606817376880, −10.93016617657600583436285481705, −9.777215282242881763255818773209, −9.442646342974535456236330396190, −7.70729755776688309640397238783, −7.07339067718309321156855718319, −4.90811786283425882725612270001, −3.47034506008524393466023925314, −2.85576516252595876772497875106, 0.45717934651536070792136690079, 1.20040751118547088203290792452, 2.69441449288306268470385594872, 4.95155628849191144435713765025, 5.91701891188671322318219597878, 7.913780132467481704433531393591, 8.394916735080548597288820247153, 9.474853668297227054290162915017, 10.68876533605901223888105521730, 12.41402718786440574080732087223

Graph of the $Z$-function along the critical line