Properties

Label 2-91-1.1-c7-0-35
Degree $2$
Conductor $91$
Sign $1$
Analytic cond. $28.4270$
Root an. cond. $5.33170$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 17.8·2-s + 86.1·3-s + 190.·4-s + 250.·5-s + 1.53e3·6-s − 343·7-s + 1.11e3·8-s + 5.23e3·9-s + 4.46e3·10-s − 5.17e3·11-s + 1.64e4·12-s − 2.19e3·13-s − 6.12e3·14-s + 2.15e4·15-s − 4.46e3·16-s − 8.03e3·17-s + 9.35e4·18-s + 1.66e4·19-s + 4.76e4·20-s − 2.95e4·21-s − 9.23e4·22-s − 6.38e4·23-s + 9.61e4·24-s − 1.54e4·25-s − 3.92e4·26-s + 2.63e5·27-s − 6.53e4·28-s + ⋯
L(s)  = 1  + 1.57·2-s + 1.84·3-s + 1.48·4-s + 0.895·5-s + 2.90·6-s − 0.377·7-s + 0.770·8-s + 2.39·9-s + 1.41·10-s − 1.17·11-s + 2.74·12-s − 0.277·13-s − 0.596·14-s + 1.65·15-s − 0.272·16-s − 0.396·17-s + 3.77·18-s + 0.555·19-s + 1.33·20-s − 0.696·21-s − 1.84·22-s − 1.09·23-s + 1.42·24-s − 0.198·25-s − 0.437·26-s + 2.57·27-s − 0.562·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 91 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 91 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(91\)    =    \(7 \cdot 13\)
Sign: $1$
Analytic conductor: \(28.4270\)
Root analytic conductor: \(5.33170\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 91,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(8.960239057\)
\(L(\frac12)\) \(\approx\) \(8.960239057\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 + 343T \)
13 \( 1 + 2.19e3T \)
good2 \( 1 - 17.8T + 128T^{2} \)
3 \( 1 - 86.1T + 2.18e3T^{2} \)
5 \( 1 - 250.T + 7.81e4T^{2} \)
11 \( 1 + 5.17e3T + 1.94e7T^{2} \)
17 \( 1 + 8.03e3T + 4.10e8T^{2} \)
19 \( 1 - 1.66e4T + 8.93e8T^{2} \)
23 \( 1 + 6.38e4T + 3.40e9T^{2} \)
29 \( 1 - 1.07e5T + 1.72e10T^{2} \)
31 \( 1 - 9.19e4T + 2.75e10T^{2} \)
37 \( 1 + 5.02e5T + 9.49e10T^{2} \)
41 \( 1 - 3.48e5T + 1.94e11T^{2} \)
43 \( 1 + 4.85e4T + 2.71e11T^{2} \)
47 \( 1 - 9.26e5T + 5.06e11T^{2} \)
53 \( 1 + 389.T + 1.17e12T^{2} \)
59 \( 1 + 1.83e6T + 2.48e12T^{2} \)
61 \( 1 - 3.05e6T + 3.14e12T^{2} \)
67 \( 1 - 3.48e6T + 6.06e12T^{2} \)
71 \( 1 - 3.91e6T + 9.09e12T^{2} \)
73 \( 1 - 3.53e6T + 1.10e13T^{2} \)
79 \( 1 + 5.94e6T + 1.92e13T^{2} \)
83 \( 1 + 4.09e6T + 2.71e13T^{2} \)
89 \( 1 - 1.22e7T + 4.42e13T^{2} \)
97 \( 1 + 1.55e7T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.14699724262733351583527656969, −12.31239959291191263779397604096, −10.35110975924595521832434036680, −9.411061633847850353648532618822, −8.089227347869507379604507371367, −6.80269363796419591964136439890, −5.36201907344625830135447626130, −3.99659246380238225653981364205, −2.81411005390425253491242693502, −2.13209069277458106650381439216, 2.13209069277458106650381439216, 2.81411005390425253491242693502, 3.99659246380238225653981364205, 5.36201907344625830135447626130, 6.80269363796419591964136439890, 8.089227347869507379604507371367, 9.411061633847850353648532618822, 10.35110975924595521832434036680, 12.31239959291191263779397604096, 13.14699724262733351583527656969

Graph of the $Z$-function along the critical line