Properties

Label 2-91-1.1-c7-0-12
Degree $2$
Conductor $91$
Sign $1$
Analytic cond. $28.4270$
Root an. cond. $5.33170$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 19.0·2-s − 86.0·3-s + 235.·4-s − 217.·5-s − 1.64e3·6-s − 343·7-s + 2.04e3·8-s + 5.22e3·9-s − 4.14e3·10-s + 1.35e3·11-s − 2.02e4·12-s − 2.19e3·13-s − 6.53e3·14-s + 1.87e4·15-s + 8.89e3·16-s + 1.81e4·17-s + 9.95e4·18-s + 3.75e4·19-s − 5.11e4·20-s + 2.95e4·21-s + 2.59e4·22-s + 1.06e5·23-s − 1.76e5·24-s − 3.08e4·25-s − 4.18e4·26-s − 2.61e5·27-s − 8.07e4·28-s + ⋯
L(s)  = 1  + 1.68·2-s − 1.84·3-s + 1.83·4-s − 0.777·5-s − 3.10·6-s − 0.377·7-s + 1.41·8-s + 2.38·9-s − 1.31·10-s + 0.308·11-s − 3.38·12-s − 0.277·13-s − 0.636·14-s + 1.43·15-s + 0.542·16-s + 0.895·17-s + 4.02·18-s + 1.25·19-s − 1.43·20-s + 0.695·21-s + 0.519·22-s + 1.81·23-s − 2.60·24-s − 0.394·25-s − 0.467·26-s − 2.55·27-s − 0.695·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 91 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 91 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(91\)    =    \(7 \cdot 13\)
Sign: $1$
Analytic conductor: \(28.4270\)
Root analytic conductor: \(5.33170\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 91,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(2.480560489\)
\(L(\frac12)\) \(\approx\) \(2.480560489\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 + 343T \)
13 \( 1 + 2.19e3T \)
good2 \( 1 - 19.0T + 128T^{2} \)
3 \( 1 + 86.0T + 2.18e3T^{2} \)
5 \( 1 + 217.T + 7.81e4T^{2} \)
11 \( 1 - 1.35e3T + 1.94e7T^{2} \)
17 \( 1 - 1.81e4T + 4.10e8T^{2} \)
19 \( 1 - 3.75e4T + 8.93e8T^{2} \)
23 \( 1 - 1.06e5T + 3.40e9T^{2} \)
29 \( 1 - 9.56e4T + 1.72e10T^{2} \)
31 \( 1 - 1.34e5T + 2.75e10T^{2} \)
37 \( 1 - 3.05e5T + 9.49e10T^{2} \)
41 \( 1 + 4.28e5T + 1.94e11T^{2} \)
43 \( 1 - 3.14e5T + 2.71e11T^{2} \)
47 \( 1 + 1.21e6T + 5.06e11T^{2} \)
53 \( 1 - 7.67e5T + 1.17e12T^{2} \)
59 \( 1 - 1.86e5T + 2.48e12T^{2} \)
61 \( 1 - 1.76e6T + 3.14e12T^{2} \)
67 \( 1 + 4.10e5T + 6.06e12T^{2} \)
71 \( 1 + 6.41e5T + 9.09e12T^{2} \)
73 \( 1 - 4.66e6T + 1.10e13T^{2} \)
79 \( 1 + 6.39e6T + 1.92e13T^{2} \)
83 \( 1 + 1.65e6T + 2.71e13T^{2} \)
89 \( 1 - 1.16e7T + 4.42e13T^{2} \)
97 \( 1 - 5.73e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.48101865231565227790595892727, −11.76986544418489746647328426909, −11.28717353831750193884988830417, −9.957155866877108901091624475382, −7.35526446413463462509471670040, −6.47564749792442657420705052906, −5.40005673563011579984262824262, −4.61492511738079279619498239612, −3.33820688189962685076633032097, −0.878207426088264280139779091879, 0.878207426088264280139779091879, 3.33820688189962685076633032097, 4.61492511738079279619498239612, 5.40005673563011579984262824262, 6.47564749792442657420705052906, 7.35526446413463462509471670040, 9.957155866877108901091624475382, 11.28717353831750193884988830417, 11.76986544418489746647328426909, 12.48101865231565227790595892727

Graph of the $Z$-function along the critical line