Properties

Label 2-91-1.1-c1-0-2
Degree $2$
Conductor $91$
Sign $1$
Analytic cond. $0.726638$
Root an. cond. $0.852431$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.41·2-s − 1.41·3-s + 4.41·5-s − 2.00·6-s + 7-s − 2.82·8-s − 0.999·9-s + 6.24·10-s − 4.24·11-s − 13-s + 1.41·14-s − 6.24·15-s − 4.00·16-s − 1.41·17-s − 1.41·18-s + 1.24·19-s − 1.41·21-s − 6·22-s − 0.171·23-s + 4·24-s + 14.4·25-s − 1.41·26-s + 5.65·27-s + 5.82·29-s − 8.82·30-s + ⋯
L(s)  = 1  + 1.00·2-s − 0.816·3-s + 1.97·5-s − 0.816·6-s + 0.377·7-s − 0.999·8-s − 0.333·9-s + 1.97·10-s − 1.27·11-s − 0.277·13-s + 0.377·14-s − 1.61·15-s − 1.00·16-s − 0.342·17-s − 0.333·18-s + 0.285·19-s − 0.308·21-s − 1.27·22-s − 0.0357·23-s + 0.816·24-s + 2.89·25-s − 0.277·26-s + 1.08·27-s + 1.08·29-s − 1.61·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 91 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 91 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(91\)    =    \(7 \cdot 13\)
Sign: $1$
Analytic conductor: \(0.726638\)
Root analytic conductor: \(0.852431\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{91} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 91,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.335659892\)
\(L(\frac12)\) \(\approx\) \(1.335659892\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 - T \)
13 \( 1 + T \)
good2 \( 1 - 1.41T + 2T^{2} \)
3 \( 1 + 1.41T + 3T^{2} \)
5 \( 1 - 4.41T + 5T^{2} \)
11 \( 1 + 4.24T + 11T^{2} \)
17 \( 1 + 1.41T + 17T^{2} \)
19 \( 1 - 1.24T + 19T^{2} \)
23 \( 1 + 0.171T + 23T^{2} \)
29 \( 1 - 5.82T + 29T^{2} \)
31 \( 1 + 5.24T + 31T^{2} \)
37 \( 1 + 6.24T + 37T^{2} \)
41 \( 1 - 3.17T + 41T^{2} \)
43 \( 1 + 5T + 43T^{2} \)
47 \( 1 - 4.41T + 47T^{2} \)
53 \( 1 + 5.82T + 53T^{2} \)
59 \( 1 - 11.6T + 59T^{2} \)
61 \( 1 - 6T + 61T^{2} \)
67 \( 1 - 2.48T + 67T^{2} \)
71 \( 1 - 1.07T + 71T^{2} \)
73 \( 1 + 0.757T + 73T^{2} \)
79 \( 1 + 1.48T + 79T^{2} \)
83 \( 1 - 4.75T + 83T^{2} \)
89 \( 1 - 4.41T + 89T^{2} \)
97 \( 1 + 13.7T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.91530704403553248137339920165, −13.18598525856379489294894562606, −12.31039705786425851174123193269, −10.92173925275991688173885509546, −9.956676790942336342764905946639, −8.720090509496169016660368964555, −6.55216153418865536823210553119, −5.46067764345373140398153217209, −5.09174108420603531238146202946, −2.59168801763164316544158957285, 2.59168801763164316544158957285, 5.09174108420603531238146202946, 5.46067764345373140398153217209, 6.55216153418865536823210553119, 8.720090509496169016660368964555, 9.956676790942336342764905946639, 10.92173925275991688173885509546, 12.31039705786425851174123193269, 13.18598525856379489294894562606, 13.91530704403553248137339920165

Graph of the $Z$-function along the critical line