Properties

Label 2-90e2-5.4-c1-0-59
Degree $2$
Conductor $8100$
Sign $-0.447 + 0.894i$
Analytic cond. $64.6788$
Root an. cond. $8.04231$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.73i·7-s − 1.73·11-s − 5.46i·13-s + 4.73i·17-s + 4.46·19-s + 3.46i·23-s − 7.73·29-s + 5.92·31-s − 6.19i·37-s + 11.1·41-s − 3.26i·43-s + 1.26i·47-s − 0.464·49-s − 7.26i·53-s − 7.73·59-s + ⋯
L(s)  = 1  − 1.03i·7-s − 0.522·11-s − 1.51i·13-s + 1.14i·17-s + 1.02·19-s + 0.722i·23-s − 1.43·29-s + 1.06·31-s − 1.01i·37-s + 1.74·41-s − 0.498i·43-s + 0.184i·47-s − 0.0663·49-s − 0.998i·53-s − 1.00·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 + 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8100 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8100\)    =    \(2^{2} \cdot 3^{4} \cdot 5^{2}\)
Sign: $-0.447 + 0.894i$
Analytic conductor: \(64.6788\)
Root analytic conductor: \(8.04231\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{8100} (649, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 8100,\ (\ :1/2),\ -0.447 + 0.894i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.501043117\)
\(L(\frac12)\) \(\approx\) \(1.501043117\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 + 2.73iT - 7T^{2} \)
11 \( 1 + 1.73T + 11T^{2} \)
13 \( 1 + 5.46iT - 13T^{2} \)
17 \( 1 - 4.73iT - 17T^{2} \)
19 \( 1 - 4.46T + 19T^{2} \)
23 \( 1 - 3.46iT - 23T^{2} \)
29 \( 1 + 7.73T + 29T^{2} \)
31 \( 1 - 5.92T + 31T^{2} \)
37 \( 1 + 6.19iT - 37T^{2} \)
41 \( 1 - 11.1T + 41T^{2} \)
43 \( 1 + 3.26iT - 43T^{2} \)
47 \( 1 - 1.26iT - 47T^{2} \)
53 \( 1 + 7.26iT - 53T^{2} \)
59 \( 1 + 7.73T + 59T^{2} \)
61 \( 1 + 4T + 61T^{2} \)
67 \( 1 - 6.39iT - 67T^{2} \)
71 \( 1 - 11.1T + 71T^{2} \)
73 \( 1 - 0.196iT - 73T^{2} \)
79 \( 1 - 14.3T + 79T^{2} \)
83 \( 1 + 15.1iT - 83T^{2} \)
89 \( 1 - 5.19T + 89T^{2} \)
97 \( 1 - 0.732iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.74405087969558783505946599421, −7.13073767539361900499695839854, −6.04710551684708544151201130935, −5.60779582879670041788581747456, −4.83742244922653844135233795420, −3.85160082984493484948385184900, −3.41975297551013825950267292812, −2.43565002958516511346958203896, −1.29255634186707623467288052427, −0.39250421923980820701298727275, 1.09441886584919454489348562437, 2.28987874419423450495269966416, 2.71610249868806172257141623291, 3.75579654970022471664609909864, 4.72223964476221415109475682988, 5.14229331087035426504742197099, 6.05088545356677353378753082065, 6.57360411317330185410213170591, 7.45268437415367521718621233475, 7.940954928845129384283285564126

Graph of the $Z$-function along the critical line