L(s) = 1 | + 2.73i·7-s − 1.73·11-s + 5.46i·13-s − 4.73i·17-s + 4.46·19-s − 3.46i·23-s − 7.73·29-s + 5.92·31-s + 6.19i·37-s + 11.1·41-s + 3.26i·43-s − 1.26i·47-s − 0.464·49-s + 7.26i·53-s − 7.73·59-s + ⋯ |
L(s) = 1 | + 1.03i·7-s − 0.522·11-s + 1.51i·13-s − 1.14i·17-s + 1.02·19-s − 0.722i·23-s − 1.43·29-s + 1.06·31-s + 1.01i·37-s + 1.74·41-s + 0.498i·43-s − 0.184i·47-s − 0.0663·49-s + 0.998i·53-s − 1.00·59-s + ⋯ |
Λ(s)=(=(8100s/2ΓC(s)L(s)(−0.447−0.894i)Λ(2−s)
Λ(s)=(=(8100s/2ΓC(s+1/2)L(s)(−0.447−0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
8100
= 22⋅34⋅52
|
Sign: |
−0.447−0.894i
|
Analytic conductor: |
64.6788 |
Root analytic conductor: |
8.04231 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ8100(649,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 8100, ( :1/2), −0.447−0.894i)
|
Particular Values
L(1) |
≈ |
1.501043117 |
L(21) |
≈ |
1.501043117 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1 |
good | 7 | 1−2.73iT−7T2 |
| 11 | 1+1.73T+11T2 |
| 13 | 1−5.46iT−13T2 |
| 17 | 1+4.73iT−17T2 |
| 19 | 1−4.46T+19T2 |
| 23 | 1+3.46iT−23T2 |
| 29 | 1+7.73T+29T2 |
| 31 | 1−5.92T+31T2 |
| 37 | 1−6.19iT−37T2 |
| 41 | 1−11.1T+41T2 |
| 43 | 1−3.26iT−43T2 |
| 47 | 1+1.26iT−47T2 |
| 53 | 1−7.26iT−53T2 |
| 59 | 1+7.73T+59T2 |
| 61 | 1+4T+61T2 |
| 67 | 1+6.39iT−67T2 |
| 71 | 1−11.1T+71T2 |
| 73 | 1+0.196iT−73T2 |
| 79 | 1−14.3T+79T2 |
| 83 | 1−15.1iT−83T2 |
| 89 | 1−5.19T+89T2 |
| 97 | 1+0.732iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.940954928845129384283285564126, −7.45268437415367521718621233475, −6.57360411317330185410213170591, −6.05088545356677353378753082065, −5.14229331087035426504742197099, −4.72223964476221415109475682988, −3.75579654970022471664609909864, −2.71610249868806172257141623291, −2.28987874419423450495269966416, −1.09441886584919454489348562437,
0.39250421923980820701298727275, 1.29255634186707623467288052427, 2.43565002958516511346958203896, 3.41975297551013825950267292812, 3.85160082984493484948385184900, 4.83742244922653844135233795420, 5.60779582879670041788581747456, 6.04710551684708544151201130935, 7.13073767539361900499695839854, 7.74405087969558783505946599421