Properties

Label 2-9075-1.1-c1-0-214
Degree $2$
Conductor $9075$
Sign $-1$
Analytic cond. $72.4642$
Root an. cond. $8.51259$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.381·2-s + 3-s − 1.85·4-s − 0.381·6-s − 7-s + 1.47·8-s + 9-s − 1.85·12-s − 4.23·13-s + 0.381·14-s + 3.14·16-s − 7.85·17-s − 0.381·18-s + 0.854·19-s − 21-s + 4.23·23-s + 1.47·24-s + 1.61·26-s + 27-s + 1.85·28-s + 6·29-s + 5.09·31-s − 4.14·32-s + 3·34-s − 1.85·36-s + 1.76·37-s − 0.326·38-s + ⋯
L(s)  = 1  − 0.270·2-s + 0.577·3-s − 0.927·4-s − 0.155·6-s − 0.377·7-s + 0.520·8-s + 0.333·9-s − 0.535·12-s − 1.17·13-s + 0.102·14-s + 0.786·16-s − 1.90·17-s − 0.0900·18-s + 0.195·19-s − 0.218·21-s + 0.883·23-s + 0.300·24-s + 0.317·26-s + 0.192·27-s + 0.350·28-s + 1.11·29-s + 0.914·31-s − 0.732·32-s + 0.514·34-s − 0.309·36-s + 0.289·37-s − 0.0529·38-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9075 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9075 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9075\)    =    \(3 \cdot 5^{2} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(72.4642\)
Root analytic conductor: \(8.51259\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9075,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
5 \( 1 \)
11 \( 1 \)
good2 \( 1 + 0.381T + 2T^{2} \)
7 \( 1 + T + 7T^{2} \)
13 \( 1 + 4.23T + 13T^{2} \)
17 \( 1 + 7.85T + 17T^{2} \)
19 \( 1 - 0.854T + 19T^{2} \)
23 \( 1 - 4.23T + 23T^{2} \)
29 \( 1 - 6T + 29T^{2} \)
31 \( 1 - 5.09T + 31T^{2} \)
37 \( 1 - 1.76T + 37T^{2} \)
41 \( 1 - 4.23T + 41T^{2} \)
43 \( 1 - 6.70T + 43T^{2} \)
47 \( 1 + 1.09T + 47T^{2} \)
53 \( 1 - 2.61T + 53T^{2} \)
59 \( 1 - 9.61T + 59T^{2} \)
61 \( 1 + 8.56T + 61T^{2} \)
67 \( 1 - 4.85T + 67T^{2} \)
71 \( 1 + 5.32T + 71T^{2} \)
73 \( 1 - 7.70T + 73T^{2} \)
79 \( 1 + 11T + 79T^{2} \)
83 \( 1 + 7.47T + 83T^{2} \)
89 \( 1 + 3.76T + 89T^{2} \)
97 \( 1 + 1.14T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.43639294847814886987386201754, −6.88308819454231372595354721993, −6.11904092409627536129564158560, −5.03299710574885045024086325739, −4.58651281706399231831984716512, −3.97935751790111707970984745181, −2.90032217138843159561108985932, −2.36650101248507999422918268353, −1.08516242298008329916884911778, 0, 1.08516242298008329916884911778, 2.36650101248507999422918268353, 2.90032217138843159561108985932, 3.97935751790111707970984745181, 4.58651281706399231831984716512, 5.03299710574885045024086325739, 6.11904092409627536129564158560, 6.88308819454231372595354721993, 7.43639294847814886987386201754

Graph of the $Z$-function along the critical line