Properties

Label 2-9016-1.1-c1-0-105
Degree $2$
Conductor $9016$
Sign $1$
Analytic cond. $71.9931$
Root an. cond. $8.48487$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 4·5-s − 2·9-s − 4·11-s + 5·13-s + 4·15-s + 2·17-s − 6·19-s + 23-s + 11·25-s − 5·27-s + 29-s + 9·31-s − 4·33-s − 4·37-s + 5·39-s − 3·41-s + 8·43-s − 8·45-s + 5·47-s + 2·51-s + 6·53-s − 16·55-s − 6·57-s + 4·59-s + 10·61-s + 20·65-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.78·5-s − 2/3·9-s − 1.20·11-s + 1.38·13-s + 1.03·15-s + 0.485·17-s − 1.37·19-s + 0.208·23-s + 11/5·25-s − 0.962·27-s + 0.185·29-s + 1.61·31-s − 0.696·33-s − 0.657·37-s + 0.800·39-s − 0.468·41-s + 1.21·43-s − 1.19·45-s + 0.729·47-s + 0.280·51-s + 0.824·53-s − 2.15·55-s − 0.794·57-s + 0.520·59-s + 1.28·61-s + 2.48·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9016 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9016 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9016\)    =    \(2^{3} \cdot 7^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(71.9931\)
Root analytic conductor: \(8.48487\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9016,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.586904451\)
\(L(\frac12)\) \(\approx\) \(3.586904451\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
23 \( 1 - T \)
good3 \( 1 - T + p T^{2} \)
5 \( 1 - 4 T + p T^{2} \)
11 \( 1 + 4 T + p T^{2} \)
13 \( 1 - 5 T + p T^{2} \)
17 \( 1 - 2 T + p T^{2} \)
19 \( 1 + 6 T + p T^{2} \)
29 \( 1 - T + p T^{2} \)
31 \( 1 - 9 T + p T^{2} \)
37 \( 1 + 4 T + p T^{2} \)
41 \( 1 + 3 T + p T^{2} \)
43 \( 1 - 8 T + p T^{2} \)
47 \( 1 - 5 T + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 - 4 T + p T^{2} \)
61 \( 1 - 10 T + p T^{2} \)
67 \( 1 + 4 T + p T^{2} \)
71 \( 1 + 5 T + p T^{2} \)
73 \( 1 - 15 T + p T^{2} \)
79 \( 1 + 6 T + p T^{2} \)
83 \( 1 + 6 T + p T^{2} \)
89 \( 1 - 8 T + p T^{2} \)
97 \( 1 + 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.983329735683789641983119011839, −6.89898755225757394965457493437, −6.22427944100976515039703438465, −5.72071112885284431386619399514, −5.22616054505237962027078038483, −4.21062077000502854538751641371, −3.18159269469016319567712008976, −2.52176941377862984313607384670, −2.00206170859400532723065141572, −0.892674431167844766508019701449, 0.892674431167844766508019701449, 2.00206170859400532723065141572, 2.52176941377862984313607384670, 3.18159269469016319567712008976, 4.21062077000502854538751641371, 5.22616054505237962027078038483, 5.72071112885284431386619399514, 6.22427944100976515039703438465, 6.89898755225757394965457493437, 7.983329735683789641983119011839

Graph of the $Z$-function along the critical line