L(s) = 1 | + (−2.17 + 1.58i)2-s + (1.62 − 4.99i)4-s + (−0.850 + 1.17i)5-s + (1.37 + 0.446i)7-s + (2.71 + 8.34i)8-s − 3.89i·10-s + (0.371 − 3.29i)11-s + (−1.74 − 2.40i)13-s + (−3.69 + 1.20i)14-s + (−10.6 − 7.71i)16-s + (−3.35 − 2.44i)17-s + (−1.19 + 0.387i)19-s + (4.47 + 6.15i)20-s + (4.40 + 7.77i)22-s + 5.80i·23-s + ⋯ |
L(s) = 1 | + (−1.54 + 1.11i)2-s + (0.812 − 2.49i)4-s + (−0.380 + 0.523i)5-s + (0.518 + 0.168i)7-s + (0.958 + 2.95i)8-s − 1.23i·10-s + (0.111 − 0.993i)11-s + (−0.485 − 0.667i)13-s + (−0.988 + 0.321i)14-s + (−2.65 − 1.92i)16-s + (−0.814 − 0.591i)17-s + (−0.273 + 0.0888i)19-s + (0.999 + 1.37i)20-s + (0.940 + 1.65i)22-s + 1.21i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 891 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.621 + 0.783i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 891 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.621 + 0.783i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0335894 - 0.0695449i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0335894 - 0.0695449i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 11 | \( 1 + (-0.371 + 3.29i)T \) |
good | 2 | \( 1 + (2.17 - 1.58i)T + (0.618 - 1.90i)T^{2} \) |
| 5 | \( 1 + (0.850 - 1.17i)T + (-1.54 - 4.75i)T^{2} \) |
| 7 | \( 1 + (-1.37 - 0.446i)T + (5.66 + 4.11i)T^{2} \) |
| 13 | \( 1 + (1.74 + 2.40i)T + (-4.01 + 12.3i)T^{2} \) |
| 17 | \( 1 + (3.35 + 2.44i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (1.19 - 0.387i)T + (15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 - 5.80iT - 23T^{2} \) |
| 29 | \( 1 + (0.0300 - 0.0925i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (3.30 - 2.40i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (3.08 - 9.49i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (1.41 + 4.34i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 - 2.12iT - 43T^{2} \) |
| 47 | \( 1 + (6.90 - 2.24i)T + (38.0 - 27.6i)T^{2} \) |
| 53 | \( 1 + (0.197 + 0.271i)T + (-16.3 + 50.4i)T^{2} \) |
| 59 | \( 1 + (2.87 + 0.935i)T + (47.7 + 34.6i)T^{2} \) |
| 61 | \( 1 + (-0.187 + 0.257i)T + (-18.8 - 58.0i)T^{2} \) |
| 67 | \( 1 - 3.43T + 67T^{2} \) |
| 71 | \( 1 + (5.38 - 7.41i)T + (-21.9 - 67.5i)T^{2} \) |
| 73 | \( 1 + (6.75 + 2.19i)T + (59.0 + 42.9i)T^{2} \) |
| 79 | \( 1 + (5.88 + 8.10i)T + (-24.4 + 75.1i)T^{2} \) |
| 83 | \( 1 + (4.82 + 3.50i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 + 5.11iT - 89T^{2} \) |
| 97 | \( 1 + (4.88 - 3.55i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.45684870471303527740178929373, −9.615622802195751987585313582062, −8.775551525990140814648842653964, −8.165039421273956948480355638936, −7.38402710447295926106033224489, −6.73570420853604779497005771362, −5.74322406566668989030636588953, −4.96004983706951266262728254313, −3.10422684520451752487069524320, −1.54909162607129948563562228732,
0.06171673202171714340093673506, 1.64355951550544719684035823367, 2.44052086006290647546022861219, 4.01332431044918590841905526714, 4.62975728781077578992950710137, 6.62772200450947183405916286962, 7.39577761120332650792924544842, 8.249771562113650252200344403273, 8.836188328822685395707638710747, 9.579456139486639585113864381557