Properties

Label 2-891-33.32-c1-0-2
Degree $2$
Conductor $891$
Sign $-1$
Analytic cond. $7.11467$
Root an. cond. $2.66733$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s + 4.25i·5-s + 3.31i·11-s + 4·16-s − 8.51i·20-s − 3.31i·23-s − 13.1·25-s − 11.1·31-s − 5.11·37-s − 6.63i·44-s + 7.07i·47-s + 7·49-s + 1.43i·53-s − 14.1·55-s − 11.3i·59-s + ⋯
L(s)  = 1  − 4-s + 1.90i·5-s + 1.00i·11-s + 16-s − 1.90i·20-s − 0.691i·23-s − 2.62·25-s − 1.99·31-s − 0.841·37-s − 1.00i·44-s + 1.03i·47-s + 49-s + 0.197i·53-s − 1.90·55-s − 1.47i·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 891 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 891 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(891\)    =    \(3^{4} \cdot 11\)
Sign: $-1$
Analytic conductor: \(7.11467\)
Root analytic conductor: \(2.66733\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{891} (890, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 891,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.638917i\)
\(L(\frac12)\) \(\approx\) \(0.638917i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
11 \( 1 - 3.31iT \)
good2 \( 1 + 2T^{2} \)
5 \( 1 - 4.25iT - 5T^{2} \)
7 \( 1 - 7T^{2} \)
13 \( 1 - 13T^{2} \)
17 \( 1 + 17T^{2} \)
19 \( 1 - 19T^{2} \)
23 \( 1 + 3.31iT - 23T^{2} \)
29 \( 1 + 29T^{2} \)
31 \( 1 + 11.1T + 31T^{2} \)
37 \( 1 + 5.11T + 37T^{2} \)
41 \( 1 + 41T^{2} \)
43 \( 1 - 43T^{2} \)
47 \( 1 - 7.07iT - 47T^{2} \)
53 \( 1 - 1.43iT - 53T^{2} \)
59 \( 1 + 11.3iT - 59T^{2} \)
61 \( 1 - 61T^{2} \)
67 \( 1 + 2.11T + 67T^{2} \)
71 \( 1 + 5.69iT - 71T^{2} \)
73 \( 1 - 73T^{2} \)
79 \( 1 - 79T^{2} \)
83 \( 1 + 83T^{2} \)
89 \( 1 - 16.5iT - 89T^{2} \)
97 \( 1 + 17.1T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.49490204589582780143755800383, −9.799206561339967031658437295465, −9.040766024813352618538424115417, −7.82727229240121470074088526289, −7.19121234182572331601111758609, −6.34631513051654502852748216419, −5.29486193471198034119719035560, −4.12243622344941705737656843143, −3.30036534136469064049827036123, −2.10754483518850064835032181194, 0.32353526567912765520234644573, 1.51092198647333421030637917437, 3.57175837889343953216801863367, 4.34429847221281615497940346562, 5.41755835543497959201848098790, 5.64858788963120956434256139082, 7.41637424366764641038880190355, 8.385621403547732644708244291160, 8.848612661810696867028238062451, 9.375766504620632782841784241517

Graph of the $Z$-function along the critical line