L(s) = 1 | − 2·4-s − 0.939i·5-s + 3.31i·11-s + 4·16-s + 1.87i·20-s − 3.31i·23-s + 4.11·25-s + 6.11·31-s + 12.1·37-s − 6.63i·44-s − 13.7i·47-s + 7·49-s + 11.8i·53-s + 3.11·55-s + 14.6i·59-s + ⋯ |
L(s) = 1 | − 4-s − 0.420i·5-s + 1.00i·11-s + 16-s + 0.420i·20-s − 0.691i·23-s + 0.823·25-s + 1.09·31-s + 1.99·37-s − 1.00i·44-s − 1.99i·47-s + 49-s + 1.62i·53-s + 0.420·55-s + 1.90i·59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 891 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 891 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.20930\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.20930\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 11 | \( 1 - 3.31iT \) |
good | 2 | \( 1 + 2T^{2} \) |
| 5 | \( 1 + 0.939iT - 5T^{2} \) |
| 7 | \( 1 - 7T^{2} \) |
| 13 | \( 1 - 13T^{2} \) |
| 17 | \( 1 + 17T^{2} \) |
| 19 | \( 1 - 19T^{2} \) |
| 23 | \( 1 + 3.31iT - 23T^{2} \) |
| 29 | \( 1 + 29T^{2} \) |
| 31 | \( 1 - 6.11T + 31T^{2} \) |
| 37 | \( 1 - 12.1T + 37T^{2} \) |
| 41 | \( 1 + 41T^{2} \) |
| 43 | \( 1 - 43T^{2} \) |
| 47 | \( 1 + 13.7iT - 47T^{2} \) |
| 53 | \( 1 - 11.8iT - 53T^{2} \) |
| 59 | \( 1 - 14.6iT - 59T^{2} \) |
| 61 | \( 1 - 61T^{2} \) |
| 67 | \( 1 - 15.1T + 67T^{2} \) |
| 71 | \( 1 + 10.8iT - 71T^{2} \) |
| 73 | \( 1 - 73T^{2} \) |
| 79 | \( 1 - 79T^{2} \) |
| 83 | \( 1 + 83T^{2} \) |
| 89 | \( 1 - 16.5iT - 89T^{2} \) |
| 97 | \( 1 - 0.116T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.988529922059907118071337913716, −9.273493641523635836020925291894, −8.544528680950892460326095058264, −7.75187537201464943266734075886, −6.71109643924283595376348953142, −5.57461224004070071035271830005, −4.66727546044483892277171332605, −4.08569270821155434084443683803, −2.59873329176481256292351133490, −0.939577552880955272023341599912,
0.888547202080832635019228880006, 2.80313156871787134858264730748, 3.76291130746826121004391761659, 4.77909097879838579292599750801, 5.73547929252477728782997258710, 6.58688959157858818618333595203, 7.82186833283337720954730381103, 8.414843186441910994549763637020, 9.344448731133134341151082844620, 9.975279304637787624650287887877