L(s) = 1 | + (2.17 + 1.58i)2-s + (1.62 + 4.99i)4-s + (0.850 + 1.17i)5-s + (1.37 − 0.446i)7-s + (−2.71 + 8.34i)8-s + 3.89i·10-s + (−0.371 − 3.29i)11-s + (−1.74 + 2.40i)13-s + (3.69 + 1.20i)14-s + (−10.6 + 7.71i)16-s + (3.35 − 2.44i)17-s + (−1.19 − 0.387i)19-s + (−4.47 + 6.15i)20-s + (4.40 − 7.77i)22-s + 5.80i·23-s + ⋯ |
L(s) = 1 | + (1.54 + 1.11i)2-s + (0.812 + 2.49i)4-s + (0.380 + 0.523i)5-s + (0.518 − 0.168i)7-s + (−0.958 + 2.95i)8-s + 1.23i·10-s + (−0.111 − 0.993i)11-s + (−0.485 + 0.667i)13-s + (0.988 + 0.321i)14-s + (−2.65 + 1.92i)16-s + (0.814 − 0.591i)17-s + (−0.273 − 0.0888i)19-s + (−0.999 + 1.37i)20-s + (0.940 − 1.65i)22-s + 1.21i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 891 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.621 - 0.783i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 891 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.621 - 0.783i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.72392 + 3.56928i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.72392 + 3.56928i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 11 | \( 1 + (0.371 + 3.29i)T \) |
good | 2 | \( 1 + (-2.17 - 1.58i)T + (0.618 + 1.90i)T^{2} \) |
| 5 | \( 1 + (-0.850 - 1.17i)T + (-1.54 + 4.75i)T^{2} \) |
| 7 | \( 1 + (-1.37 + 0.446i)T + (5.66 - 4.11i)T^{2} \) |
| 13 | \( 1 + (1.74 - 2.40i)T + (-4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (-3.35 + 2.44i)T + (5.25 - 16.1i)T^{2} \) |
| 19 | \( 1 + (1.19 + 0.387i)T + (15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 - 5.80iT - 23T^{2} \) |
| 29 | \( 1 + (-0.0300 - 0.0925i)T + (-23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (3.30 + 2.40i)T + (9.57 + 29.4i)T^{2} \) |
| 37 | \( 1 + (3.08 + 9.49i)T + (-29.9 + 21.7i)T^{2} \) |
| 41 | \( 1 + (-1.41 + 4.34i)T + (-33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 + 2.12iT - 43T^{2} \) |
| 47 | \( 1 + (-6.90 - 2.24i)T + (38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (-0.197 + 0.271i)T + (-16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (-2.87 + 0.935i)T + (47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (-0.187 - 0.257i)T + (-18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 - 3.43T + 67T^{2} \) |
| 71 | \( 1 + (-5.38 - 7.41i)T + (-21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (6.75 - 2.19i)T + (59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (5.88 - 8.10i)T + (-24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (-4.82 + 3.50i)T + (25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 + 5.11iT - 89T^{2} \) |
| 97 | \( 1 + (4.88 + 3.55i)T + (29.9 + 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.75710080049672432271165263605, −9.387222038446526825790136780467, −8.355376965584589172314982597568, −7.45529656123940576931251341092, −6.95017361042779761538460575366, −5.83390823940202560318359320395, −5.41355283177373259167062553277, −4.28726346091614207784732571845, −3.40676094178588992619996472439, −2.33952088582418613349474897400,
1.33278332345048808853396906070, 2.28006040410921672248856409156, 3.37501582214052932526297313586, 4.57774487443771398798030081656, 5.05970101721967693544954735856, 5.87156680895578816471062366097, 6.91613373762033965576144891779, 8.178429600391835491314662467925, 9.408192660527166028582819386798, 10.21802173731051654103211675786