Properties

Label 2-891-297.83-c1-0-17
Degree $2$
Conductor $891$
Sign $0.243 + 0.969i$
Analytic cond. $7.11467$
Root an. cond. $2.66733$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.537 − 0.0755i)2-s + (−1.63 + 0.470i)4-s + (−3.32 + 1.34i)5-s + (0.885 + 0.597i)7-s + (−1.83 + 0.817i)8-s + (−1.68 + 0.974i)10-s + (−1.29 − 3.05i)11-s + (1.23 + 2.32i)13-s + (0.520 + 0.253i)14-s + (1.96 − 1.22i)16-s + (1.71 − 0.365i)17-s + (−0.0216 − 0.0486i)19-s + (4.82 − 3.76i)20-s + (−0.924 − 1.54i)22-s + (2.86 − 7.88i)23-s + ⋯
L(s)  = 1  + (0.379 − 0.0534i)2-s + (−0.819 + 0.235i)4-s + (−1.48 + 0.601i)5-s + (0.334 + 0.225i)7-s + (−0.649 + 0.289i)8-s + (−0.533 + 0.308i)10-s + (−0.389 − 0.921i)11-s + (0.342 + 0.644i)13-s + (0.139 + 0.0678i)14-s + (0.491 − 0.307i)16-s + (0.416 − 0.0885i)17-s + (−0.00497 − 0.0111i)19-s + (1.07 − 0.842i)20-s + (−0.197 − 0.329i)22-s + (0.598 − 1.64i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 891 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.243 + 0.969i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 891 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.243 + 0.969i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(891\)    =    \(3^{4} \cdot 11\)
Sign: $0.243 + 0.969i$
Analytic conductor: \(7.11467\)
Root analytic conductor: \(2.66733\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{891} (413, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 891,\ (\ :1/2),\ 0.243 + 0.969i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.546658 - 0.426402i\)
\(L(\frac12)\) \(\approx\) \(0.546658 - 0.426402i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
11 \( 1 + (1.29 + 3.05i)T \)
good2 \( 1 + (-0.537 + 0.0755i)T + (1.92 - 0.551i)T^{2} \)
5 \( 1 + (3.32 - 1.34i)T + (3.59 - 3.47i)T^{2} \)
7 \( 1 + (-0.885 - 0.597i)T + (2.62 + 6.49i)T^{2} \)
13 \( 1 + (-1.23 - 2.32i)T + (-7.26 + 10.7i)T^{2} \)
17 \( 1 + (-1.71 + 0.365i)T + (15.5 - 6.91i)T^{2} \)
19 \( 1 + (0.0216 + 0.0486i)T + (-12.7 + 14.1i)T^{2} \)
23 \( 1 + (-2.86 + 7.88i)T + (-17.6 - 14.7i)T^{2} \)
29 \( 1 + (3.86 + 7.91i)T + (-17.8 + 22.8i)T^{2} \)
31 \( 1 + (0.0700 - 2.00i)T + (-30.9 - 2.16i)T^{2} \)
37 \( 1 + (3.34 + 1.48i)T + (24.7 + 27.4i)T^{2} \)
41 \( 1 + (4.76 - 9.76i)T + (-25.2 - 32.3i)T^{2} \)
43 \( 1 + (-6.03 + 7.19i)T + (-7.46 - 42.3i)T^{2} \)
47 \( 1 + (-0.158 + 0.552i)T + (-39.8 - 24.9i)T^{2} \)
53 \( 1 + (0.862 - 0.280i)T + (42.8 - 31.1i)T^{2} \)
59 \( 1 + (-7.68 - 1.91i)T + (52.0 + 27.6i)T^{2} \)
61 \( 1 + (-10.3 + 0.362i)T + (60.8 - 4.25i)T^{2} \)
67 \( 1 + (0.424 + 2.40i)T + (-62.9 + 22.9i)T^{2} \)
71 \( 1 + (0.524 + 2.46i)T + (-64.8 + 28.8i)T^{2} \)
73 \( 1 + (9.10 - 0.956i)T + (71.4 - 15.1i)T^{2} \)
79 \( 1 + (0.309 + 2.20i)T + (-75.9 + 21.7i)T^{2} \)
83 \( 1 + (8.66 + 4.60i)T + (46.4 + 68.8i)T^{2} \)
89 \( 1 + (-8.64 - 4.99i)T + (44.5 + 77.0i)T^{2} \)
97 \( 1 + (2.43 - 6.02i)T + (-69.7 - 67.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.03035870064631579883414794444, −8.732907079619733071292628849221, −8.382457285074695139150387759109, −7.55326827989263537359891783502, −6.50850135696679657005091918237, −5.37634446778570036704779847395, −4.36474963633499503136249225586, −3.68566573454550634701616867899, −2.76110314767928842467885471773, −0.35943529039724829466413600319, 1.17350164674045800009935707843, 3.36993210893997067179700265316, 4.02617833854592050744283542900, 4.98412081956595629240284454774, 5.51243328977371696876810477228, 7.16038542983462950103330833491, 7.76447964639682859545434622197, 8.569034734644541357991836622112, 9.336701653531120231155003234496, 10.31125265417131513386260918594

Graph of the $Z$-function along the critical line