L(s) = 1 | + (−0.537 + 0.390i)2-s + (−0.481 + 1.48i)4-s + (0.903 + 0.656i)5-s + (−1.20 + 3.71i)7-s + (−0.730 − 2.24i)8-s − 0.741·10-s + (1.17 + 3.10i)11-s + (−2.16 + 1.57i)13-s + (−0.801 − 2.46i)14-s + (−1.25 − 0.909i)16-s + (4.48 + 3.26i)17-s + (−1.58 − 4.88i)19-s + (−1.40 + 1.02i)20-s + (−1.84 − 1.20i)22-s − 2.11·23-s + ⋯ |
L(s) = 1 | + (−0.380 + 0.276i)2-s + (−0.240 + 0.741i)4-s + (0.403 + 0.293i)5-s + (−0.456 + 1.40i)7-s + (−0.258 − 0.794i)8-s − 0.234·10-s + (0.355 + 0.934i)11-s + (−0.600 + 0.436i)13-s + (−0.214 − 0.659i)14-s + (−0.312 − 0.227i)16-s + (1.08 + 0.790i)17-s + (−0.363 − 1.11i)19-s + (−0.314 + 0.228i)20-s + (−0.393 − 0.257i)22-s − 0.440·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 891 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.999 + 0.0252i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 891 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.999 + 0.0252i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0105923 - 0.839732i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0105923 - 0.839732i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 11 | \( 1 + (-1.17 - 3.10i)T \) |
good | 2 | \( 1 + (0.537 - 0.390i)T + (0.618 - 1.90i)T^{2} \) |
| 5 | \( 1 + (-0.903 - 0.656i)T + (1.54 + 4.75i)T^{2} \) |
| 7 | \( 1 + (1.20 - 3.71i)T + (-5.66 - 4.11i)T^{2} \) |
| 13 | \( 1 + (2.16 - 1.57i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (-4.48 - 3.26i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (1.58 + 4.88i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 + 2.11T + 23T^{2} \) |
| 29 | \( 1 + (0.334 - 1.03i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (-0.348 + 0.252i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (2.69 - 8.27i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (-0.902 - 2.77i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 + 2.23T + 43T^{2} \) |
| 47 | \( 1 + (3.96 + 12.2i)T + (-38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (-4.56 + 3.31i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (-0.734 + 2.25i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (-3.30 - 2.40i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 + 9.75T + 67T^{2} \) |
| 71 | \( 1 + (-5.11 - 3.71i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (3.60 - 11.1i)T + (-59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (3.65 - 2.65i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (-0.389 - 0.283i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 + 16.0T + 89T^{2} \) |
| 97 | \( 1 + (6.48 - 4.71i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.01710185743282912815381411321, −9.762949137600461926479760902381, −8.781125938069610698089244470242, −8.231522208277325703548918514828, −7.03774156221530688772673080741, −6.49311434785654853202686441741, −5.39795477135129715531035646073, −4.28156104164438816164471208815, −3.05092194353897268217206027591, −2.10540472026488481882898425302,
0.46275315951784902422942900184, 1.53556641209884429987447613982, 3.17761831448396582041464729047, 4.24734550213935252086596695725, 5.46497593583626164717513174386, 6.03885196151899997433211672333, 7.25499135091433946852239866309, 8.050321101540348295015947009640, 9.167813632825811163595388521698, 9.795728371388316739502120924027