L(s) = 1 | + (2.11 − 1.53i)2-s + (1.5 − 4.61i)4-s + (−2.61 − 1.90i)5-s + (−0.309 + 0.951i)7-s + (−2.30 − 7.10i)8-s − 8.47·10-s + (−0.809 − 3.21i)11-s + (−2 + 1.45i)13-s + (0.809 + 2.48i)14-s + (−7.97 − 5.79i)16-s + (1.5 + 1.08i)17-s + (0.309 + 0.951i)19-s + (−12.7 + 9.23i)20-s + (−6.66 − 5.56i)22-s + 2.38·23-s + ⋯ |
L(s) = 1 | + (1.49 − 1.08i)2-s + (0.750 − 2.30i)4-s + (−1.17 − 0.850i)5-s + (−0.116 + 0.359i)7-s + (−0.816 − 2.51i)8-s − 2.67·10-s + (−0.243 − 0.969i)11-s + (−0.554 + 0.403i)13-s + (0.216 + 0.665i)14-s + (−1.99 − 1.44i)16-s + (0.363 + 0.264i)17-s + (0.0708 + 0.218i)19-s + (−2.84 + 2.06i)20-s + (−1.42 − 1.18i)22-s + 0.496·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 891 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.995 - 0.0913i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 891 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.995 - 0.0913i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.112036 + 2.44665i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.112036 + 2.44665i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 11 | \( 1 + (0.809 + 3.21i)T \) |
good | 2 | \( 1 + (-2.11 + 1.53i)T + (0.618 - 1.90i)T^{2} \) |
| 5 | \( 1 + (2.61 + 1.90i)T + (1.54 + 4.75i)T^{2} \) |
| 7 | \( 1 + (0.309 - 0.951i)T + (-5.66 - 4.11i)T^{2} \) |
| 13 | \( 1 + (2 - 1.45i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (-1.5 - 1.08i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (-0.309 - 0.951i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 - 2.38T + 23T^{2} \) |
| 29 | \( 1 + (-0.572 + 1.76i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (-1.30 + 0.951i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (-1.88 + 5.79i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (3.54 + 10.9i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 + 4.85T + 43T^{2} \) |
| 47 | \( 1 + (1.83 + 5.65i)T + (-38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (-5.73 + 4.16i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (0.190 - 0.587i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (3.35 + 2.43i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 - 6T + 67T^{2} \) |
| 71 | \( 1 + (-11.3 - 8.28i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (2.11 - 6.51i)T + (-59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (-7.73 + 5.62i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (-11.5 - 8.36i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 + 11.2T + 89T^{2} \) |
| 97 | \( 1 + (4.85 - 3.52i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.00756136347978503381444230573, −8.963494547706448669014503173861, −8.083550085987528502808109602866, −6.86861989254539340709474062377, −5.66283861682383227841124687221, −5.08496041897666157795569777859, −4.07187702317889266878213895630, −3.47179604253122515555837601275, −2.26781808758544159168998947588, −0.71248925022986609927474814306,
2.79036428106843959681131277779, 3.46520017265420928644145779666, 4.50616976434005615224285706875, 5.08469084509030989933315259519, 6.41401066780639407770903699851, 7.06061603740376869479139717241, 7.60604949451991617988826767995, 8.243120632728134287386082097436, 9.787049511574524761636854477329, 10.82405851610382698080383430724