L(s) = 1 | + (1.25 − 0.908i)2-s + (0.120 − 0.371i)4-s + (0.478 + 0.347i)5-s + (0.223 − 0.686i)7-s + (0.768 + 2.36i)8-s + 0.915·10-s + (0.539 − 3.27i)11-s + (1.27 − 0.925i)13-s + (−0.344 − 1.06i)14-s + (3.74 + 2.72i)16-s + (3.71 + 2.69i)17-s + (0.775 + 2.38i)19-s + (0.187 − 0.135i)20-s + (−2.29 − 4.58i)22-s + 4.45·23-s + ⋯ |
L(s) = 1 | + (0.884 − 0.642i)2-s + (0.0603 − 0.185i)4-s + (0.214 + 0.155i)5-s + (0.0843 − 0.259i)7-s + (0.271 + 0.836i)8-s + 0.289·10-s + (0.162 − 0.986i)11-s + (0.353 − 0.256i)13-s + (−0.0921 − 0.283i)14-s + (0.936 + 0.680i)16-s + (0.901 + 0.654i)17-s + (0.177 + 0.547i)19-s + (0.0418 − 0.0303i)20-s + (−0.490 − 0.977i)22-s + 0.928·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 891 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.876 + 0.480i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 891 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.876 + 0.480i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.64380 - 0.676995i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.64380 - 0.676995i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 11 | \( 1 + (-0.539 + 3.27i)T \) |
good | 2 | \( 1 + (-1.25 + 0.908i)T + (0.618 - 1.90i)T^{2} \) |
| 5 | \( 1 + (-0.478 - 0.347i)T + (1.54 + 4.75i)T^{2} \) |
| 7 | \( 1 + (-0.223 + 0.686i)T + (-5.66 - 4.11i)T^{2} \) |
| 13 | \( 1 + (-1.27 + 0.925i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (-3.71 - 2.69i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (-0.775 - 2.38i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 - 4.45T + 23T^{2} \) |
| 29 | \( 1 + (2.15 - 6.63i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (-7.38 + 5.36i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (-0.893 + 2.75i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (-0.356 - 1.09i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 + 4.21T + 43T^{2} \) |
| 47 | \( 1 + (-0.0703 - 0.216i)T + (-38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (4.61 - 3.35i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (2.20 - 6.78i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (3.68 + 2.67i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 + 8.09T + 67T^{2} \) |
| 71 | \( 1 + (9.95 + 7.23i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (-4.78 + 14.7i)T + (-59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (-11.8 + 8.59i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (5.62 + 4.08i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 + 12.4T + 89T^{2} \) |
| 97 | \( 1 + (11.4 - 8.33i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.54816620517047097241444025541, −9.269031555326371998429338690071, −8.290715346124659668411053444389, −7.66694211992846650665736047700, −6.25011549044733910738884776425, −5.61032136410902960901463142402, −4.52095499109511898559462871075, −3.55864953283239190590214599844, −2.85512645824069858473554442624, −1.36497683572095710186890605691,
1.32427446920521030186771679076, 2.94967823196417103074075737507, 4.18321628423769518920962817088, 5.01190325046130474420062036311, 5.66186873810033566130654637728, 6.74117618281514841868942816725, 7.27245722459309495693993282380, 8.400804040991434751438092106149, 9.590080256790519535321921839253, 9.869817374759595629242485569522