L(s) = 1 | − 3·3-s − 5-s + 6·9-s − 6·13-s + 3·15-s + 4·17-s + 6·19-s + 3·23-s − 4·25-s − 9·27-s − 4·29-s − 9·31-s − 7·37-s + 18·39-s + 2·41-s + 6·43-s − 6·45-s + 12·47-s − 7·49-s − 12·51-s − 2·53-s − 18·57-s − 9·59-s + 8·61-s + 6·65-s + 15·67-s − 9·69-s + ⋯ |
L(s) = 1 | − 1.73·3-s − 0.447·5-s + 2·9-s − 1.66·13-s + 0.774·15-s + 0.970·17-s + 1.37·19-s + 0.625·23-s − 4/5·25-s − 1.73·27-s − 0.742·29-s − 1.61·31-s − 1.15·37-s + 2.88·39-s + 0.312·41-s + 0.914·43-s − 0.894·45-s + 1.75·47-s − 49-s − 1.68·51-s − 0.274·53-s − 2.38·57-s − 1.17·59-s + 1.02·61-s + 0.744·65-s + 1.83·67-s − 1.08·69-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 7744 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7744 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 11 | \( 1 \) |
good | 3 | \( 1 + p T + p T^{2} \) |
| 5 | \( 1 + T + p T^{2} \) |
| 7 | \( 1 + p T^{2} \) |
| 13 | \( 1 + 6 T + p T^{2} \) |
| 17 | \( 1 - 4 T + p T^{2} \) |
| 19 | \( 1 - 6 T + p T^{2} \) |
| 23 | \( 1 - 3 T + p T^{2} \) |
| 29 | \( 1 + 4 T + p T^{2} \) |
| 31 | \( 1 + 9 T + p T^{2} \) |
| 37 | \( 1 + 7 T + p T^{2} \) |
| 41 | \( 1 - 2 T + p T^{2} \) |
| 43 | \( 1 - 6 T + p T^{2} \) |
| 47 | \( 1 - 12 T + p T^{2} \) |
| 53 | \( 1 + 2 T + p T^{2} \) |
| 59 | \( 1 + 9 T + p T^{2} \) |
| 61 | \( 1 - 8 T + p T^{2} \) |
| 67 | \( 1 - 15 T + p T^{2} \) |
| 71 | \( 1 + 3 T + p T^{2} \) |
| 73 | \( 1 - 6 T + p T^{2} \) |
| 79 | \( 1 - 6 T + p T^{2} \) |
| 83 | \( 1 + 6 T + p T^{2} \) |
| 89 | \( 1 + 5 T + p T^{2} \) |
| 97 | \( 1 + 3 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.41521137410038569676427151362, −6.94528645803972561404529285677, −5.90867154161300245415126602084, −5.33090864495094012598496753221, −5.05005404936584905685172612439, −4.08054307496981156259480865093, −3.29771072732567128272502920161, −2.03191530017336082217493981921, −0.915867362081140800723371681075, 0,
0.915867362081140800723371681075, 2.03191530017336082217493981921, 3.29771072732567128272502920161, 4.08054307496981156259480865093, 5.05005404936584905685172612439, 5.33090864495094012598496753221, 5.90867154161300245415126602084, 6.94528645803972561404529285677, 7.41521137410038569676427151362