Properties

Label 2-882-7.2-c3-0-39
Degree $2$
Conductor $882$
Sign $0.386 + 0.922i$
Analytic cond. $52.0396$
Root an. cond. $7.21385$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1 + 1.73i)2-s + (−1.99 − 3.46i)4-s + (7.61 − 13.1i)5-s + 7.99·8-s + (15.2 + 26.3i)10-s + (−1 − 1.73i)11-s + 30.4·13-s + (−8 + 13.8i)16-s + (−22.8 − 39.5i)17-s + (76.1 − 131. i)19-s − 60.9·20-s + 3.99·22-s + (−15 + 25.9i)23-s + (−53.5 − 92.6i)25-s + (−30.4 + 52.7i)26-s + ⋯
L(s)  = 1  + (−0.353 + 0.612i)2-s + (−0.249 − 0.433i)4-s + (0.681 − 1.17i)5-s + 0.353·8-s + (0.481 + 0.834i)10-s + (−0.0274 − 0.0474i)11-s + 0.649·13-s + (−0.125 + 0.216i)16-s + (−0.325 − 0.564i)17-s + (0.919 − 1.59i)19-s − 0.681·20-s + 0.0387·22-s + (−0.135 + 0.235i)23-s + (−0.427 − 0.741i)25-s + (−0.229 + 0.397i)26-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.386 + 0.922i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.386 + 0.922i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(882\)    =    \(2 \cdot 3^{2} \cdot 7^{2}\)
Sign: $0.386 + 0.922i$
Analytic conductor: \(52.0396\)
Root analytic conductor: \(7.21385\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{882} (667, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 882,\ (\ :3/2),\ 0.386 + 0.922i)\)

Particular Values

\(L(2)\) \(\approx\) \(1.797763847\)
\(L(\frac12)\) \(\approx\) \(1.797763847\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (1 - 1.73i)T \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 + (-7.61 + 13.1i)T + (-62.5 - 108. i)T^{2} \)
11 \( 1 + (1 + 1.73i)T + (-665.5 + 1.15e3i)T^{2} \)
13 \( 1 - 30.4T + 2.19e3T^{2} \)
17 \( 1 + (22.8 + 39.5i)T + (-2.45e3 + 4.25e3i)T^{2} \)
19 \( 1 + (-76.1 + 131. i)T + (-3.42e3 - 5.94e3i)T^{2} \)
23 \( 1 + (15 - 25.9i)T + (-6.08e3 - 1.05e4i)T^{2} \)
29 \( 1 - 212T + 2.43e4T^{2} \)
31 \( 1 + (-106. - 184. i)T + (-1.48e4 + 2.57e4i)T^{2} \)
37 \( 1 + (123 - 213. i)T + (-2.53e4 - 4.38e4i)T^{2} \)
41 \( 1 - 319.T + 6.89e4T^{2} \)
43 \( 1 + 284T + 7.95e4T^{2} \)
47 \( 1 + (-30.4 + 52.7i)T + (-5.19e4 - 8.99e4i)T^{2} \)
53 \( 1 + (274 + 474. i)T + (-7.44e4 + 1.28e5i)T^{2} \)
59 \( 1 + (335. + 580. i)T + (-1.02e5 + 1.77e5i)T^{2} \)
61 \( 1 + (258. - 448. i)T + (-1.13e5 - 1.96e5i)T^{2} \)
67 \( 1 + (326 + 564. i)T + (-1.50e5 + 2.60e5i)T^{2} \)
71 \( 1 - 770T + 3.57e5T^{2} \)
73 \( 1 + (487. + 844. i)T + (-1.94e5 + 3.36e5i)T^{2} \)
79 \( 1 + (236 - 408. i)T + (-2.46e5 - 4.26e5i)T^{2} \)
83 \( 1 + 182.T + 5.71e5T^{2} \)
89 \( 1 + (-357. + 619. i)T + (-3.52e5 - 6.10e5i)T^{2} \)
97 \( 1 + 304.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.343841336080027483643874717545, −8.818062998700698037827012529475, −8.088723849369965719541666400918, −6.94418379319620600555524861359, −6.20117087815480231871551767231, −5.04628470369222934014733936784, −4.75241188660656020193570739131, −3.04238548924186821063007445591, −1.50967372765508650199969297650, −0.58051030137407099959542647424, 1.25859933387705786838903877597, 2.36661247360830379367372947633, 3.27303342996702108862046147078, 4.26379832998782045986602295769, 5.78973150129711513649653004042, 6.37231445600240265059460091363, 7.47386358585205381603305183745, 8.269835351662694288768657879687, 9.284653337075926306567966595169, 10.16968836604202739733179358150

Graph of the $Z$-function along the critical line