Properties

Label 2-882-63.58-c1-0-9
Degree $2$
Conductor $882$
Sign $-0.415 - 0.909i$
Analytic cond. $7.04280$
Root an. cond. $2.65382$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + (1.5 + 0.866i)3-s + 4-s + (1 + 1.73i)5-s + (−1.5 − 0.866i)6-s − 8-s + (1.5 + 2.59i)9-s + (−1 − 1.73i)10-s + (−0.5 + 0.866i)11-s + (1.5 + 0.866i)12-s + (−3 + 5.19i)13-s + 3.46i·15-s + 16-s + (−2.5 − 4.33i)17-s + (−1.5 − 2.59i)18-s + (−3.5 + 6.06i)19-s + ⋯
L(s)  = 1  − 0.707·2-s + (0.866 + 0.499i)3-s + 0.5·4-s + (0.447 + 0.774i)5-s + (−0.612 − 0.353i)6-s − 0.353·8-s + (0.5 + 0.866i)9-s + (−0.316 − 0.547i)10-s + (−0.150 + 0.261i)11-s + (0.433 + 0.249i)12-s + (−0.832 + 1.44i)13-s + 0.894i·15-s + 0.250·16-s + (−0.606 − 1.05i)17-s + (−0.353 − 0.612i)18-s + (−0.802 + 1.39i)19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.415 - 0.909i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.415 - 0.909i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(882\)    =    \(2 \cdot 3^{2} \cdot 7^{2}\)
Sign: $-0.415 - 0.909i$
Analytic conductor: \(7.04280\)
Root analytic conductor: \(2.65382\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{882} (373, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 882,\ (\ :1/2),\ -0.415 - 0.909i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.755465 + 1.17505i\)
\(L(\frac12)\) \(\approx\) \(0.755465 + 1.17505i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 + (-1.5 - 0.866i)T \)
7 \( 1 \)
good5 \( 1 + (-1 - 1.73i)T + (-2.5 + 4.33i)T^{2} \)
11 \( 1 + (0.5 - 0.866i)T + (-5.5 - 9.52i)T^{2} \)
13 \( 1 + (3 - 5.19i)T + (-6.5 - 11.2i)T^{2} \)
17 \( 1 + (2.5 + 4.33i)T + (-8.5 + 14.7i)T^{2} \)
19 \( 1 + (3.5 - 6.06i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + (2 + 3.46i)T + (-11.5 + 19.9i)T^{2} \)
29 \( 1 + (-2 - 3.46i)T + (-14.5 + 25.1i)T^{2} \)
31 \( 1 - 6T + 31T^{2} \)
37 \( 1 + (1 - 1.73i)T + (-18.5 - 32.0i)T^{2} \)
41 \( 1 + (-1.5 + 2.59i)T + (-20.5 - 35.5i)T^{2} \)
43 \( 1 + (-0.5 - 0.866i)T + (-21.5 + 37.2i)T^{2} \)
47 \( 1 + 47T^{2} \)
53 \( 1 + (6 + 10.3i)T + (-26.5 + 45.8i)T^{2} \)
59 \( 1 - 7T + 59T^{2} \)
61 \( 1 - 12T + 61T^{2} \)
67 \( 1 - 13T + 67T^{2} \)
71 \( 1 + 8T + 71T^{2} \)
73 \( 1 + (-0.5 - 0.866i)T + (-36.5 + 63.2i)T^{2} \)
79 \( 1 + 6T + 79T^{2} \)
83 \( 1 + (-8 - 13.8i)T + (-41.5 + 71.8i)T^{2} \)
89 \( 1 + (3 - 5.19i)T + (-44.5 - 77.0i)T^{2} \)
97 \( 1 + (2.5 + 4.33i)T + (-48.5 + 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.01774042577781044569141894288, −9.781906937207063259766060784799, −8.769191358265987266659673664024, −8.088511044148036834990943646146, −6.97781512180445837306400454561, −6.54013398236485940008217571986, −4.97042087332050589331086009998, −3.98163625808823220186171275637, −2.60537293457361060008247803849, −2.04445571257970849994995682780, 0.72886438361820211365616066580, 2.08504426574558671157875234302, 2.99637338889730586992485892775, 4.44007009865832714635654359256, 5.65972631198221324511713976871, 6.61547509958852745718702516373, 7.60830750679636519801628642651, 8.329195165711868322342342496364, 8.866934552999432882079680967780, 9.727441805925686140107129515604

Graph of the $Z$-function along the critical line