L(s) = 1 | + (0.5 − 0.866i)2-s + (−1.29 − 1.15i)3-s + (−0.499 − 0.866i)4-s − 1.58·5-s + (−1.64 + 0.545i)6-s − 0.999·8-s + (0.349 + 2.97i)9-s + (−0.794 + 1.37i)10-s − 1.58·11-s + (−0.349 + 1.69i)12-s + (−2.40 + 4.16i)13-s + (2.05 + 1.82i)15-s + (−0.5 + 0.866i)16-s + (2.69 − 4.67i)17-s + (2.75 + 1.18i)18-s + (3.54 + 6.14i)19-s + ⋯ |
L(s) = 1 | + (0.353 − 0.612i)2-s + (−0.747 − 0.664i)3-s + (−0.249 − 0.433i)4-s − 0.710·5-s + (−0.671 + 0.222i)6-s − 0.353·8-s + (0.116 + 0.993i)9-s + (−0.251 + 0.434i)10-s − 0.478·11-s + (−0.100 + 0.489i)12-s + (−0.667 + 1.15i)13-s + (0.530 + 0.472i)15-s + (−0.125 + 0.216i)16-s + (0.654 − 1.13i)17-s + (0.649 + 0.279i)18-s + (0.814 + 1.41i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.913 - 0.406i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.913 - 0.406i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.709465 + 0.150532i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.709465 + 0.150532i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 + 0.866i)T \) |
| 3 | \( 1 + (1.29 + 1.15i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + 1.58T + 5T^{2} \) |
| 11 | \( 1 + 1.58T + 11T^{2} \) |
| 13 | \( 1 + (2.40 - 4.16i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (-2.69 + 4.67i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-3.54 - 6.14i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 - 0.300T + 23T^{2} \) |
| 29 | \( 1 + (-4.13 - 7.16i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (1.35 + 2.34i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-0.5 - 0.866i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (2.93 - 5.08i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (0.833 + 1.44i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-1.33 + 2.30i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-2.44 + 4.23i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-3.23 - 5.60i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (2.23 - 3.87i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-5.02 - 8.70i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 12.7T + 71T^{2} \) |
| 73 | \( 1 + (8.02 - 13.9i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (4.19 - 7.26i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (1.18 + 2.04i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (1.60 + 2.78i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (0.712 + 1.23i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.27954125568838833984507368521, −9.683379554791742061638339236806, −8.385464581888918603436625129913, −7.48488425056266081263394280528, −6.85197870417964930967714364317, −5.60204393742419137039065841598, −4.95078751094005910501521419290, −3.86439888202851027259706602745, −2.59332647475873462420720403912, −1.26516580058419491578603581842,
0.37829664396530860237396457369, 2.98124494861227508944443258946, 3.93041284134526325081779523297, 4.92406378904736415913657689935, 5.54006366560514180036861991828, 6.50731690598978669440943841824, 7.55917851659143289386169401320, 8.139647979495087091602436133704, 9.296059909870284616264994387246, 10.15826934200336078441991665630