Properties

Label 2-882-21.2-c2-0-5
Degree $2$
Conductor $882$
Sign $-0.848 - 0.529i$
Analytic cond. $24.0327$
Root an. cond. $4.90232$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.22 + 0.707i)2-s + (0.999 + 1.73i)4-s + (−7.70 − 4.44i)5-s + 2.82i·8-s + (−6.29 − 10.8i)10-s + (15.4 − 8.89i)11-s + 2.58·13-s + (−2.00 + 3.46i)16-s + (−22.4 + 12.9i)17-s + (−10 + 17.3i)19-s − 17.7i·20-s + 25.1·22-s + (−15.4 − 8.89i)23-s + (27.0 + 46.9i)25-s + (3.16 + 1.82i)26-s + ⋯
L(s)  = 1  + (0.612 + 0.353i)2-s + (0.249 + 0.433i)4-s + (−1.54 − 0.889i)5-s + 0.353i·8-s + (−0.629 − 1.08i)10-s + (1.40 − 0.808i)11-s + 0.198·13-s + (−0.125 + 0.216i)16-s + (−1.31 + 0.760i)17-s + (−0.526 + 0.911i)19-s − 0.889i·20-s + 1.14·22-s + (−0.670 − 0.386i)23-s + (1.08 + 1.87i)25-s + (0.121 + 0.0702i)26-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.848 - 0.529i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.848 - 0.529i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(882\)    =    \(2 \cdot 3^{2} \cdot 7^{2}\)
Sign: $-0.848 - 0.529i$
Analytic conductor: \(24.0327\)
Root analytic conductor: \(4.90232\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{882} (863, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 882,\ (\ :1),\ -0.848 - 0.529i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.6872482377\)
\(L(\frac12)\) \(\approx\) \(0.6872482377\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-1.22 - 0.707i)T \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 + (7.70 + 4.44i)T + (12.5 + 21.6i)T^{2} \)
11 \( 1 + (-15.4 + 8.89i)T + (60.5 - 104. i)T^{2} \)
13 \( 1 - 2.58T + 169T^{2} \)
17 \( 1 + (22.4 - 12.9i)T + (144.5 - 250. i)T^{2} \)
19 \( 1 + (10 - 17.3i)T + (-180.5 - 312. i)T^{2} \)
23 \( 1 + (15.4 + 8.89i)T + (264.5 + 458. i)T^{2} \)
29 \( 1 - 11.9iT - 841T^{2} \)
31 \( 1 + (-8.58 - 14.8i)T + (-480.5 + 832. i)T^{2} \)
37 \( 1 + (19 - 32.9i)T + (-684.5 - 1.18e3i)T^{2} \)
41 \( 1 + 15.7iT - 1.68e3T^{2} \)
43 \( 1 + 43.4T + 1.84e3T^{2} \)
47 \( 1 + (-14.6 - 8.48i)T + (1.10e3 + 1.91e3i)T^{2} \)
53 \( 1 + (74.0 - 42.7i)T + (1.40e3 - 2.43e3i)T^{2} \)
59 \( 1 + (-1.42 + 0.824i)T + (1.74e3 - 3.01e3i)T^{2} \)
61 \( 1 + (50.1 - 86.8i)T + (-1.86e3 - 3.22e3i)T^{2} \)
67 \( 1 + (18.3 + 31.7i)T + (-2.24e3 + 3.88e3i)T^{2} \)
71 \( 1 - 17.7iT - 5.04e3T^{2} \)
73 \( 1 + (14.4 + 25.0i)T + (-2.66e3 + 4.61e3i)T^{2} \)
79 \( 1 + (59.1 - 102. i)T + (-3.12e3 - 5.40e3i)T^{2} \)
83 \( 1 + 120. iT - 6.88e3T^{2} \)
89 \( 1 + (-120. - 69.7i)T + (3.96e3 + 6.85e3i)T^{2} \)
97 \( 1 - 44.4T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.53903805537108814847694931504, −8.930360795022187084728380261134, −8.580930075806751462893545473018, −7.84667895603584003331548560445, −6.72529695686153030739985725281, −6.04411851001656760260262943289, −4.68925856592186790733253493342, −4.07861566079055489242156128988, −3.40322138443682018572326270499, −1.44114190484581666442502698679, 0.18564317765379741502903736136, 2.07773734357593596796719437579, 3.28256553196275058173791449152, 4.14497387440632183359201467748, 4.68314537355295617067534744843, 6.41374287110891006452416346427, 6.85426604266936560993793772606, 7.68291484484660417323030308358, 8.801545537654341157995266039904, 9.684163306034651884785929953279

Graph of the $Z$-function along the critical line