L(s) = 1 | + (−1.22 − 0.707i)2-s + (0.999 + 1.73i)4-s + (3.67 + 2.12i)5-s − 2.82i·8-s + (−3 − 5.19i)10-s + (14.6 − 8.48i)11-s + 8·13-s + (−2.00 + 3.46i)16-s + (−11.0 + 6.36i)17-s + (8 − 13.8i)19-s + 8.48i·20-s − 24·22-s + (14.6 + 8.48i)23-s + (−3.5 − 6.06i)25-s + (−9.79 − 5.65i)26-s + ⋯ |
L(s) = 1 | + (−0.612 − 0.353i)2-s + (0.249 + 0.433i)4-s + (0.734 + 0.424i)5-s − 0.353i·8-s + (−0.300 − 0.519i)10-s + (1.33 − 0.771i)11-s + 0.615·13-s + (−0.125 + 0.216i)16-s + (−0.648 + 0.374i)17-s + (0.421 − 0.729i)19-s + 0.424i·20-s − 1.09·22-s + (0.638 + 0.368i)23-s + (−0.140 − 0.242i)25-s + (−0.376 − 0.217i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.848 + 0.529i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.848 + 0.529i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.780567928\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.780567928\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.22 + 0.707i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (-3.67 - 2.12i)T + (12.5 + 21.6i)T^{2} \) |
| 11 | \( 1 + (-14.6 + 8.48i)T + (60.5 - 104. i)T^{2} \) |
| 13 | \( 1 - 8T + 169T^{2} \) |
| 17 | \( 1 + (11.0 - 6.36i)T + (144.5 - 250. i)T^{2} \) |
| 19 | \( 1 + (-8 + 13.8i)T + (-180.5 - 312. i)T^{2} \) |
| 23 | \( 1 + (-14.6 - 8.48i)T + (264.5 + 458. i)T^{2} \) |
| 29 | \( 1 - 4.24iT - 841T^{2} \) |
| 31 | \( 1 + (22 + 38.1i)T + (-480.5 + 832. i)T^{2} \) |
| 37 | \( 1 + (-17 + 29.4i)T + (-684.5 - 1.18e3i)T^{2} \) |
| 41 | \( 1 - 46.6iT - 1.68e3T^{2} \) |
| 43 | \( 1 + 40T + 1.84e3T^{2} \) |
| 47 | \( 1 + (-73.4 - 42.4i)T + (1.10e3 + 1.91e3i)T^{2} \) |
| 53 | \( 1 + (-33.0 + 19.0i)T + (1.40e3 - 2.43e3i)T^{2} \) |
| 59 | \( 1 + (-29.3 + 16.9i)T + (1.74e3 - 3.01e3i)T^{2} \) |
| 61 | \( 1 + (25 - 43.3i)T + (-1.86e3 - 3.22e3i)T^{2} \) |
| 67 | \( 1 + (4 + 6.92i)T + (-2.24e3 + 3.88e3i)T^{2} \) |
| 71 | \( 1 + 50.9iT - 5.04e3T^{2} \) |
| 73 | \( 1 + (-8 - 13.8i)T + (-2.66e3 + 4.61e3i)T^{2} \) |
| 79 | \( 1 + (-38 + 65.8i)T + (-3.12e3 - 5.40e3i)T^{2} \) |
| 83 | \( 1 - 118. iT - 6.88e3T^{2} \) |
| 89 | \( 1 + (11.0 + 6.36i)T + (3.96e3 + 6.85e3i)T^{2} \) |
| 97 | \( 1 - 176T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.682504880120649654326556811005, −9.174214134833367877450205258652, −8.450669431952445377144919705237, −7.29510597043918513824478881988, −6.42655846622703584232587513997, −5.79526518098685410539451085865, −4.24448905908103766497422397014, −3.25326041481633603663054732158, −2.08691683668623345723881941881, −0.895555127605426677625014775021,
1.11392023832488626151105945597, 2.02502157391267709299706532480, 3.67209649549636107384458131348, 4.86489606911471324929308752611, 5.79926872273733297714545870604, 6.68960507114634937417583612715, 7.34303127084533990588073938674, 8.674339197239107248503627204852, 9.045208695839360636121675385412, 9.833559645355799741646297659351