Properties

Label 2-882-21.11-c2-0-2
Degree $2$
Conductor $882$
Sign $-0.635 - 0.772i$
Analytic cond. $24.0327$
Root an. cond. $4.90232$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.22 + 0.707i)2-s + (0.999 − 1.73i)4-s + (3.46 − 2i)5-s + 2.82i·8-s + (−2.82 + 4.89i)10-s + (−2.44 − 1.41i)11-s − 12.7·13-s + (−2.00 − 3.46i)16-s + (−3.46 − 2i)17-s + (11.3 + 19.5i)19-s − 7.99i·20-s + 4·22-s + (−31.8 + 18.3i)23-s + (−4.50 + 7.79i)25-s + (15.5 − 9i)26-s + ⋯
L(s)  = 1  + (−0.612 + 0.353i)2-s + (0.249 − 0.433i)4-s + (0.692 − 0.400i)5-s + 0.353i·8-s + (−0.282 + 0.489i)10-s + (−0.222 − 0.128i)11-s − 0.979·13-s + (−0.125 − 0.216i)16-s + (−0.203 − 0.117i)17-s + (0.595 + 1.03i)19-s − 0.399i·20-s + 0.181·22-s + (−1.38 + 0.799i)23-s + (−0.180 + 0.311i)25-s + (0.599 − 0.346i)26-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.635 - 0.772i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.635 - 0.772i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(882\)    =    \(2 \cdot 3^{2} \cdot 7^{2}\)
Sign: $-0.635 - 0.772i$
Analytic conductor: \(24.0327\)
Root analytic conductor: \(4.90232\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{882} (557, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 882,\ (\ :1),\ -0.635 - 0.772i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.7254556096\)
\(L(\frac12)\) \(\approx\) \(0.7254556096\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (1.22 - 0.707i)T \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 + (-3.46 + 2i)T + (12.5 - 21.6i)T^{2} \)
11 \( 1 + (2.44 + 1.41i)T + (60.5 + 104. i)T^{2} \)
13 \( 1 + 12.7T + 169T^{2} \)
17 \( 1 + (3.46 + 2i)T + (144.5 + 250. i)T^{2} \)
19 \( 1 + (-11.3 - 19.5i)T + (-180.5 + 312. i)T^{2} \)
23 \( 1 + (31.8 - 18.3i)T + (264.5 - 458. i)T^{2} \)
29 \( 1 + 32.5iT - 841T^{2} \)
31 \( 1 + (25.4 - 44.0i)T + (-480.5 - 832. i)T^{2} \)
37 \( 1 + (-16 - 27.7i)T + (-684.5 + 1.18e3i)T^{2} \)
41 \( 1 + 38iT - 1.68e3T^{2} \)
43 \( 1 - 20T + 1.84e3T^{2} \)
47 \( 1 + (17.3 - 10i)T + (1.10e3 - 1.91e3i)T^{2} \)
53 \( 1 + (-82.0 - 47.3i)T + (1.40e3 + 2.43e3i)T^{2} \)
59 \( 1 + (3.46 + 2i)T + (1.74e3 + 3.01e3i)T^{2} \)
61 \( 1 + (-41.7 - 72.2i)T + (-1.86e3 + 3.22e3i)T^{2} \)
67 \( 1 + (-24 + 41.5i)T + (-2.24e3 - 3.88e3i)T^{2} \)
71 \( 1 + 76.3iT - 5.04e3T^{2} \)
73 \( 1 + (60.1 - 104. i)T + (-2.66e3 - 4.61e3i)T^{2} \)
79 \( 1 + (-74 - 128. i)T + (-3.12e3 + 5.40e3i)T^{2} \)
83 \( 1 - 80iT - 6.88e3T^{2} \)
89 \( 1 + (91.7 - 53i)T + (3.96e3 - 6.85e3i)T^{2} \)
97 \( 1 + 154.T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.803167262384927437678900627071, −9.670457716298809406204906399642, −8.543391894071146175848592802966, −7.75744995886010431637521631823, −6.97260088271436595851934718770, −5.76094418314169368935693232069, −5.36067431266887447381562060516, −3.98322815221639811342235467661, −2.46436587660661309979746228995, −1.38189409192808109422983825483, 0.28184435681888848515937201656, 2.02468000817191919363043446369, 2.70639543852417181851246440122, 4.09923496087980252722804606771, 5.27167086692064896210697098632, 6.31348320740685910494276509070, 7.18427180157288137046512388527, 7.962490211169731623926469398143, 9.012455552256406912107026647048, 9.751825370864325340495273742174

Graph of the $Z$-function along the critical line