| L(s)  = 1 | + (−0.781 − 0.623i)2-s     + (0.222 + 0.974i)4-s   + (1.04 + 0.505i)5-s     + (−2.62 + 0.311i)7-s   + (0.433 − 0.900i)8-s     + (−0.505 − 1.04i)10-s   + (−2.62 − 2.09i)11-s     + (2.75 + 2.19i)13-s   + (2.24 + 1.39i)14-s     + (−0.900 + 0.433i)16-s   + (−0.165 + 0.722i)17-s     + 6.51i·19-s   + (−0.259 + 1.13i)20-s     + (0.747 + 3.27i)22-s   + (8.22 − 1.87i)23-s    + ⋯ | 
| L(s)  = 1 | + (−0.552 − 0.440i)2-s     + (0.111 + 0.487i)4-s   + (0.469 + 0.225i)5-s     + (−0.993 + 0.117i)7-s   + (0.153 − 0.318i)8-s     + (−0.159 − 0.331i)10-s   + (−0.791 − 0.631i)11-s     + (0.763 + 0.608i)13-s   + (0.600 + 0.372i)14-s     + (−0.225 + 0.108i)16-s   + (−0.0400 + 0.175i)17-s     + 1.49i·19-s   + (−0.0579 + 0.253i)20-s     + (0.159 + 0.698i)22-s   + (1.71 − 0.391i)23-s    + ⋯ | 
\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.485 - 0.874i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.485 - 0.874i)\, \overline{\Lambda}(1-s) \end{aligned}\]
  Particular Values
  
  
        
      | \(L(1)\) | \(\approx\) | \(0.771727 + 0.453937i\) | 
    
      | \(L(\frac12)\) | \(\approx\) | \(0.771727 + 0.453937i\) | 
    
        
      | \(L(\frac{3}{2})\) |  | not available | 
    
      | \(L(1)\) |  | not available | 
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
|  | $p$ | $F_p(T)$ | 
|---|
| bad | 2 | \( 1 + (0.781 + 0.623i)T \) | 
|  | 3 | \( 1 \) | 
|  | 7 | \( 1 + (2.62 - 0.311i)T \) | 
| good | 5 | \( 1 + (-1.04 - 0.505i)T + (3.11 + 3.90i)T^{2} \) | 
|  | 11 | \( 1 + (2.62 + 2.09i)T + (2.44 + 10.7i)T^{2} \) | 
|  | 13 | \( 1 + (-2.75 - 2.19i)T + (2.89 + 12.6i)T^{2} \) | 
|  | 17 | \( 1 + (0.165 - 0.722i)T + (-15.3 - 7.37i)T^{2} \) | 
|  | 19 | \( 1 - 6.51iT - 19T^{2} \) | 
|  | 23 | \( 1 + (-8.22 + 1.87i)T + (20.7 - 9.97i)T^{2} \) | 
|  | 29 | \( 1 + (-2.13 - 0.488i)T + (26.1 + 12.5i)T^{2} \) | 
|  | 31 | \( 1 - 8.50iT - 31T^{2} \) | 
|  | 37 | \( 1 + (2.22 - 9.73i)T + (-33.3 - 16.0i)T^{2} \) | 
|  | 41 | \( 1 + (-0.840 - 0.404i)T + (25.5 + 32.0i)T^{2} \) | 
|  | 43 | \( 1 + (10.1 - 4.88i)T + (26.8 - 33.6i)T^{2} \) | 
|  | 47 | \( 1 + (6.85 - 8.59i)T + (-10.4 - 45.8i)T^{2} \) | 
|  | 53 | \( 1 + (-5.82 + 1.33i)T + (47.7 - 22.9i)T^{2} \) | 
|  | 59 | \( 1 + (12.5 - 6.05i)T + (36.7 - 46.1i)T^{2} \) | 
|  | 61 | \( 1 + (-4.31 - 0.985i)T + (54.9 + 26.4i)T^{2} \) | 
|  | 67 | \( 1 - 7.58T + 67T^{2} \) | 
|  | 71 | \( 1 + (2.95 - 0.673i)T + (63.9 - 30.8i)T^{2} \) | 
|  | 73 | \( 1 + (-11.1 + 8.90i)T + (16.2 - 71.1i)T^{2} \) | 
|  | 79 | \( 1 - 10.1T + 79T^{2} \) | 
|  | 83 | \( 1 + (1.64 + 2.06i)T + (-18.4 + 80.9i)T^{2} \) | 
|  | 89 | \( 1 + (-3.51 - 4.40i)T + (-19.8 + 86.7i)T^{2} \) | 
|  | 97 | \( 1 - 3.07iT - 97T^{2} \) | 
| show more |  | 
| show less |  | 
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−10.31912091631206552601595084975, −9.546730314628724543176675434801, −8.669502225708264887076460438501, −8.025844765262297146492448660179, −6.67183706946100470209182677686, −6.24879517168725135533733969476, −4.99426957321165718733350575069, −3.51134000600169514277193544809, −2.85262345840950301622648031440, −1.39204239497114314021913586098, 
0.53901534322452255717136156237, 2.26737059280218523200002538860, 3.45495058953397011702816274102, 4.98224137206486097635068920235, 5.66180274102583136163427647570, 6.75049032615306732338116323060, 7.31001375830341324585588633791, 8.398402897099323833073620026287, 9.291604950565445138487794948914, 9.733137229427726274495300767084
