L(s) = 1 | + 4·2-s + 16·4-s − 4.50·5-s + 64·8-s − 18.0·10-s + 116.·11-s − 85.4·13-s + 256·16-s − 33.2·17-s + 635.·19-s − 72.0·20-s + 464.·22-s − 2.72e3·23-s − 3.10e3·25-s − 341.·26-s − 5.86e3·29-s + 279.·31-s + 1.02e3·32-s − 133.·34-s + 3.03e3·37-s + 2.54e3·38-s − 288.·40-s − 819.·41-s + 1.11e4·43-s + 1.85e3·44-s − 1.09e4·46-s + 7.40e3·47-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.5·4-s − 0.0805·5-s + 0.353·8-s − 0.0569·10-s + 0.289·11-s − 0.140·13-s + 0.250·16-s − 0.0279·17-s + 0.403·19-s − 0.0402·20-s + 0.204·22-s − 1.07·23-s − 0.993·25-s − 0.0991·26-s − 1.29·29-s + 0.0521·31-s + 0.176·32-s − 0.0197·34-s + 0.364·37-s + 0.285·38-s − 0.0284·40-s − 0.0761·41-s + 0.915·43-s + 0.144·44-s − 0.760·46-s + 0.489·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - 4T \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + 4.50T + 3.12e3T^{2} \) |
| 11 | \( 1 - 116.T + 1.61e5T^{2} \) |
| 13 | \( 1 + 85.4T + 3.71e5T^{2} \) |
| 17 | \( 1 + 33.2T + 1.41e6T^{2} \) |
| 19 | \( 1 - 635.T + 2.47e6T^{2} \) |
| 23 | \( 1 + 2.72e3T + 6.43e6T^{2} \) |
| 29 | \( 1 + 5.86e3T + 2.05e7T^{2} \) |
| 31 | \( 1 - 279.T + 2.86e7T^{2} \) |
| 37 | \( 1 - 3.03e3T + 6.93e7T^{2} \) |
| 41 | \( 1 + 819.T + 1.15e8T^{2} \) |
| 43 | \( 1 - 1.11e4T + 1.47e8T^{2} \) |
| 47 | \( 1 - 7.40e3T + 2.29e8T^{2} \) |
| 53 | \( 1 - 1.36e4T + 4.18e8T^{2} \) |
| 59 | \( 1 + 2.23e4T + 7.14e8T^{2} \) |
| 61 | \( 1 + 1.26e4T + 8.44e8T^{2} \) |
| 67 | \( 1 + 5.23e4T + 1.35e9T^{2} \) |
| 71 | \( 1 + 6.02e4T + 1.80e9T^{2} \) |
| 73 | \( 1 - 7.69e4T + 2.07e9T^{2} \) |
| 79 | \( 1 + 3.35e4T + 3.07e9T^{2} \) |
| 83 | \( 1 + 6.05e4T + 3.93e9T^{2} \) |
| 89 | \( 1 + 9.21e4T + 5.58e9T^{2} \) |
| 97 | \( 1 - 1.52e5T + 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.047409172072625776713966181973, −7.88277245126493696555168659416, −7.28099661275107127614004906919, −6.14966986664153974324857214883, −5.54716310709169844178730456079, −4.37672752137482228456574187899, −3.68192868222775962197203958632, −2.51705136803645793995081085002, −1.47499430740729147525165745607, 0,
1.47499430740729147525165745607, 2.51705136803645793995081085002, 3.68192868222775962197203958632, 4.37672752137482228456574187899, 5.54716310709169844178730456079, 6.14966986664153974324857214883, 7.28099661275107127614004906919, 7.88277245126493696555168659416, 9.047409172072625776713966181973