Properties

Label 2-882-1.1-c5-0-75
Degree $2$
Conductor $882$
Sign $-1$
Analytic cond. $141.458$
Root an. cond. $11.8936$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·2-s + 16·4-s − 4.50·5-s + 64·8-s − 18.0·10-s + 116.·11-s − 85.4·13-s + 256·16-s − 33.2·17-s + 635.·19-s − 72.0·20-s + 464.·22-s − 2.72e3·23-s − 3.10e3·25-s − 341.·26-s − 5.86e3·29-s + 279.·31-s + 1.02e3·32-s − 133.·34-s + 3.03e3·37-s + 2.54e3·38-s − 288.·40-s − 819.·41-s + 1.11e4·43-s + 1.85e3·44-s − 1.09e4·46-s + 7.40e3·47-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.5·4-s − 0.0805·5-s + 0.353·8-s − 0.0569·10-s + 0.289·11-s − 0.140·13-s + 0.250·16-s − 0.0279·17-s + 0.403·19-s − 0.0402·20-s + 0.204·22-s − 1.07·23-s − 0.993·25-s − 0.0991·26-s − 1.29·29-s + 0.0521·31-s + 0.176·32-s − 0.0197·34-s + 0.364·37-s + 0.285·38-s − 0.0284·40-s − 0.0761·41-s + 0.915·43-s + 0.144·44-s − 0.760·46-s + 0.489·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(882\)    =    \(2 \cdot 3^{2} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(141.458\)
Root analytic conductor: \(11.8936\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 882,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 4T \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 + 4.50T + 3.12e3T^{2} \)
11 \( 1 - 116.T + 1.61e5T^{2} \)
13 \( 1 + 85.4T + 3.71e5T^{2} \)
17 \( 1 + 33.2T + 1.41e6T^{2} \)
19 \( 1 - 635.T + 2.47e6T^{2} \)
23 \( 1 + 2.72e3T + 6.43e6T^{2} \)
29 \( 1 + 5.86e3T + 2.05e7T^{2} \)
31 \( 1 - 279.T + 2.86e7T^{2} \)
37 \( 1 - 3.03e3T + 6.93e7T^{2} \)
41 \( 1 + 819.T + 1.15e8T^{2} \)
43 \( 1 - 1.11e4T + 1.47e8T^{2} \)
47 \( 1 - 7.40e3T + 2.29e8T^{2} \)
53 \( 1 - 1.36e4T + 4.18e8T^{2} \)
59 \( 1 + 2.23e4T + 7.14e8T^{2} \)
61 \( 1 + 1.26e4T + 8.44e8T^{2} \)
67 \( 1 + 5.23e4T + 1.35e9T^{2} \)
71 \( 1 + 6.02e4T + 1.80e9T^{2} \)
73 \( 1 - 7.69e4T + 2.07e9T^{2} \)
79 \( 1 + 3.35e4T + 3.07e9T^{2} \)
83 \( 1 + 6.05e4T + 3.93e9T^{2} \)
89 \( 1 + 9.21e4T + 5.58e9T^{2} \)
97 \( 1 - 1.52e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.047409172072625776713966181973, −7.88277245126493696555168659416, −7.28099661275107127614004906919, −6.14966986664153974324857214883, −5.54716310709169844178730456079, −4.37672752137482228456574187899, −3.68192868222775962197203958632, −2.51705136803645793995081085002, −1.47499430740729147525165745607, 0, 1.47499430740729147525165745607, 2.51705136803645793995081085002, 3.68192868222775962197203958632, 4.37672752137482228456574187899, 5.54716310709169844178730456079, 6.14966986664153974324857214883, 7.28099661275107127614004906919, 7.88277245126493696555168659416, 9.047409172072625776713966181973

Graph of the $Z$-function along the critical line