Properties

Label 2-882-1.1-c5-0-67
Degree $2$
Conductor $882$
Sign $-1$
Analytic cond. $141.458$
Root an. cond. $11.8936$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s + 16·4-s + 77.5·5-s − 64·8-s − 310.·10-s − 618.·11-s + 130.·13-s + 256·16-s − 263.·17-s + 91.9·19-s + 1.24e3·20-s + 2.47e3·22-s + 1.39e3·23-s + 2.89e3·25-s − 521.·26-s + 5.69e3·29-s − 6.95e3·31-s − 1.02e3·32-s + 1.05e3·34-s + 5.04e3·37-s − 367.·38-s − 4.96e3·40-s + 2.09e4·41-s − 2.13e4·43-s − 9.89e3·44-s − 5.56e3·46-s − 1.98e4·47-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.5·4-s + 1.38·5-s − 0.353·8-s − 0.981·10-s − 1.54·11-s + 0.213·13-s + 0.250·16-s − 0.221·17-s + 0.0584·19-s + 0.694·20-s + 1.08·22-s + 0.548·23-s + 0.926·25-s − 0.151·26-s + 1.25·29-s − 1.29·31-s − 0.176·32-s + 0.156·34-s + 0.606·37-s − 0.0413·38-s − 0.490·40-s + 1.95·41-s − 1.76·43-s − 0.770·44-s − 0.387·46-s − 1.31·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(882\)    =    \(2 \cdot 3^{2} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(141.458\)
Root analytic conductor: \(11.8936\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 882,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 4T \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 - 77.5T + 3.12e3T^{2} \)
11 \( 1 + 618.T + 1.61e5T^{2} \)
13 \( 1 - 130.T + 3.71e5T^{2} \)
17 \( 1 + 263.T + 1.41e6T^{2} \)
19 \( 1 - 91.9T + 2.47e6T^{2} \)
23 \( 1 - 1.39e3T + 6.43e6T^{2} \)
29 \( 1 - 5.69e3T + 2.05e7T^{2} \)
31 \( 1 + 6.95e3T + 2.86e7T^{2} \)
37 \( 1 - 5.04e3T + 6.93e7T^{2} \)
41 \( 1 - 2.09e4T + 1.15e8T^{2} \)
43 \( 1 + 2.13e4T + 1.47e8T^{2} \)
47 \( 1 + 1.98e4T + 2.29e8T^{2} \)
53 \( 1 - 2.75e4T + 4.18e8T^{2} \)
59 \( 1 + 4.35e4T + 7.14e8T^{2} \)
61 \( 1 + 3.39e4T + 8.44e8T^{2} \)
67 \( 1 - 1.03e4T + 1.35e9T^{2} \)
71 \( 1 + 7.69e4T + 1.80e9T^{2} \)
73 \( 1 + 1.98e3T + 2.07e9T^{2} \)
79 \( 1 + 5.38e3T + 3.07e9T^{2} \)
83 \( 1 - 6.89e4T + 3.93e9T^{2} \)
89 \( 1 - 9.04e4T + 5.58e9T^{2} \)
97 \( 1 + 1.37e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.110987749020565277903405329118, −8.220400334419701025294000155163, −7.37080987351475880579049186904, −6.35577450239813307539667345171, −5.63181366803601933671415933532, −4.77707166905828990550874416558, −3.04556915047309937487484153527, −2.28413930294448249988341959805, −1.30001818799649595666258386704, 0, 1.30001818799649595666258386704, 2.28413930294448249988341959805, 3.04556915047309937487484153527, 4.77707166905828990550874416558, 5.63181366803601933671415933532, 6.35577450239813307539667345171, 7.37080987351475880579049186904, 8.220400334419701025294000155163, 9.110987749020565277903405329118

Graph of the $Z$-function along the critical line