Properties

Label 2-882-1.1-c5-0-56
Degree $2$
Conductor $882$
Sign $-1$
Analytic cond. $141.458$
Root an. cond. $11.8936$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s + 16·4-s + 22.4·5-s − 64·8-s − 89.9·10-s − 340.·11-s + 728.·13-s + 256·16-s + 809.·17-s − 1.02e3·19-s + 359.·20-s + 1.36e3·22-s − 1.42e3·23-s − 2.61e3·25-s − 2.91e3·26-s − 5.21e3·29-s + 7.03e3·31-s − 1.02e3·32-s − 3.23e3·34-s + 1.27e4·37-s + 4.10e3·38-s − 1.43e3·40-s + 1.17e3·41-s + 3.66e3·43-s − 5.44e3·44-s + 5.68e3·46-s + 9.31e3·47-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.5·4-s + 0.402·5-s − 0.353·8-s − 0.284·10-s − 0.848·11-s + 1.19·13-s + 0.250·16-s + 0.679·17-s − 0.652·19-s + 0.201·20-s + 0.599·22-s − 0.560·23-s − 0.838·25-s − 0.845·26-s − 1.15·29-s + 1.31·31-s − 0.176·32-s − 0.480·34-s + 1.53·37-s + 0.461·38-s − 0.142·40-s + 0.109·41-s + 0.302·43-s − 0.424·44-s + 0.396·46-s + 0.614·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(882\)    =    \(2 \cdot 3^{2} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(141.458\)
Root analytic conductor: \(11.8936\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 882,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 4T \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 - 22.4T + 3.12e3T^{2} \)
11 \( 1 + 340.T + 1.61e5T^{2} \)
13 \( 1 - 728.T + 3.71e5T^{2} \)
17 \( 1 - 809.T + 1.41e6T^{2} \)
19 \( 1 + 1.02e3T + 2.47e6T^{2} \)
23 \( 1 + 1.42e3T + 6.43e6T^{2} \)
29 \( 1 + 5.21e3T + 2.05e7T^{2} \)
31 \( 1 - 7.03e3T + 2.86e7T^{2} \)
37 \( 1 - 1.27e4T + 6.93e7T^{2} \)
41 \( 1 - 1.17e3T + 1.15e8T^{2} \)
43 \( 1 - 3.66e3T + 1.47e8T^{2} \)
47 \( 1 - 9.31e3T + 2.29e8T^{2} \)
53 \( 1 + 3.56e4T + 4.18e8T^{2} \)
59 \( 1 + 3.03e4T + 7.14e8T^{2} \)
61 \( 1 + 3.21e4T + 8.44e8T^{2} \)
67 \( 1 - 2.13e4T + 1.35e9T^{2} \)
71 \( 1 + 6.11e4T + 1.80e9T^{2} \)
73 \( 1 + 4.12e4T + 2.07e9T^{2} \)
79 \( 1 + 3.50e4T + 3.07e9T^{2} \)
83 \( 1 - 8.61e4T + 3.93e9T^{2} \)
89 \( 1 - 7.79e4T + 5.58e9T^{2} \)
97 \( 1 - 1.61e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.028836540491247939619092079475, −8.055112854525507532072218935418, −7.60495344669563393371368526228, −6.18638740186039916205990629628, −5.88171352231280897524639204479, −4.49425724696113673905834650185, −3.30090166998639905152420973040, −2.21931967658440275607589337776, −1.21058453152264209795029917407, 0, 1.21058453152264209795029917407, 2.21931967658440275607589337776, 3.30090166998639905152420973040, 4.49425724696113673905834650185, 5.88171352231280897524639204479, 6.18638740186039916205990629628, 7.60495344669563393371368526228, 8.055112854525507532072218935418, 9.028836540491247939619092079475

Graph of the $Z$-function along the critical line