Properties

Label 2-882-1.1-c5-0-41
Degree $2$
Conductor $882$
Sign $1$
Analytic cond. $141.458$
Root an. cond. $11.8936$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·2-s + 16·4-s + 84·5-s + 64·8-s + 336·10-s + 336·11-s − 584·13-s + 256·16-s − 1.45e3·17-s − 470·19-s + 1.34e3·20-s + 1.34e3·22-s + 4.20e3·23-s + 3.93e3·25-s − 2.33e3·26-s − 4.86e3·29-s + 7.37e3·31-s + 1.02e3·32-s − 5.83e3·34-s + 1.43e4·37-s − 1.88e3·38-s + 5.37e3·40-s + 6.22e3·41-s + 3.70e3·43-s + 5.37e3·44-s + 1.68e4·46-s − 1.81e3·47-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 1.50·5-s + 0.353·8-s + 1.06·10-s + 0.837·11-s − 0.958·13-s + 1/4·16-s − 1.22·17-s − 0.298·19-s + 0.751·20-s + 0.592·22-s + 1.65·23-s + 1.25·25-s − 0.677·26-s − 1.07·29-s + 1.37·31-s + 0.176·32-s − 0.865·34-s + 1.72·37-s − 0.211·38-s + 0.531·40-s + 0.578·41-s + 0.305·43-s + 0.418·44-s + 1.17·46-s − 0.119·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(882\)    =    \(2 \cdot 3^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(141.458\)
Root analytic conductor: \(11.8936\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 882,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(5.415649272\)
\(L(\frac12)\) \(\approx\) \(5.415649272\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - p^{2} T \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 - 84 T + p^{5} T^{2} \)
11 \( 1 - 336 T + p^{5} T^{2} \)
13 \( 1 + 584 T + p^{5} T^{2} \)
17 \( 1 + 1458 T + p^{5} T^{2} \)
19 \( 1 + 470 T + p^{5} T^{2} \)
23 \( 1 - 4200 T + p^{5} T^{2} \)
29 \( 1 + 4866 T + p^{5} T^{2} \)
31 \( 1 - 7372 T + p^{5} T^{2} \)
37 \( 1 - 14330 T + p^{5} T^{2} \)
41 \( 1 - 6222 T + p^{5} T^{2} \)
43 \( 1 - 3704 T + p^{5} T^{2} \)
47 \( 1 + 1812 T + p^{5} T^{2} \)
53 \( 1 - 37242 T + p^{5} T^{2} \)
59 \( 1 - 34302 T + p^{5} T^{2} \)
61 \( 1 + 24476 T + p^{5} T^{2} \)
67 \( 1 + 17452 T + p^{5} T^{2} \)
71 \( 1 + 28224 T + p^{5} T^{2} \)
73 \( 1 + 3602 T + p^{5} T^{2} \)
79 \( 1 - 42872 T + p^{5} T^{2} \)
83 \( 1 + 35202 T + p^{5} T^{2} \)
89 \( 1 - 26730 T + p^{5} T^{2} \)
97 \( 1 - 16978 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.408973731031721803087585351830, −8.823972315927494206927386426557, −7.36977669472069384855626918636, −6.59045773130498343541670156850, −5.94016220456823706351040465501, −4.99888732023323656481769089754, −4.21626089454046941455525681040, −2.75217827729155760703739467509, −2.12637839834998106646471469788, −0.964197451088683002451190468064, 0.964197451088683002451190468064, 2.12637839834998106646471469788, 2.75217827729155760703739467509, 4.21626089454046941455525681040, 4.99888732023323656481769089754, 5.94016220456823706351040465501, 6.59045773130498343541670156850, 7.36977669472069384855626918636, 8.823972315927494206927386426557, 9.408973731031721803087585351830

Graph of the $Z$-function along the critical line