L(s) = 1 | + 4·2-s + 16·4-s + 86·5-s + 64·8-s + 344·10-s − 34·11-s + 3·13-s + 256·16-s − 1.90e3·17-s + 1.48e3·19-s + 1.37e3·20-s − 136·22-s + 224·23-s + 4.27e3·25-s + 12·26-s + 6.50e3·29-s − 1.73e3·31-s + 1.02e3·32-s − 7.61e3·34-s − 7.63e3·37-s + 5.95e3·38-s + 5.50e3·40-s + 1.54e4·41-s + 1.84e4·43-s − 544·44-s + 896·46-s + 1.84e4·47-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 1/2·4-s + 1.53·5-s + 0.353·8-s + 1.08·10-s − 0.0847·11-s + 0.00492·13-s + 1/4·16-s − 1.59·17-s + 0.946·19-s + 0.769·20-s − 0.0599·22-s + 0.0882·23-s + 1.36·25-s + 0.00348·26-s + 1.43·29-s − 0.323·31-s + 0.176·32-s − 1.12·34-s − 0.916·37-s + 0.669·38-s + 0.543·40-s + 1.43·41-s + 1.52·43-s − 0.0423·44-s + 0.0624·46-s + 1.21·47-s + ⋯ |
Λ(s)=(=(882s/2ΓC(s)L(s)Λ(6−s)
Λ(s)=(=(882s/2ΓC(s+5/2)L(s)Λ(1−s)
Particular Values
L(3) |
≈ |
5.379672344 |
L(21) |
≈ |
5.379672344 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−p2T |
| 3 | 1 |
| 7 | 1 |
good | 5 | 1−86T+p5T2 |
| 11 | 1+34T+p5T2 |
| 13 | 1−3T+p5T2 |
| 17 | 1+112pT+p5T2 |
| 19 | 1−1489T+p5T2 |
| 23 | 1−224T+p5T2 |
| 29 | 1−6508T+p5T2 |
| 31 | 1+1731T+p5T2 |
| 37 | 1+7633T+p5T2 |
| 41 | 1−15414T+p5T2 |
| 43 | 1−18491T+p5T2 |
| 47 | 1−18462T+p5T2 |
| 53 | 1−19956T+p5T2 |
| 59 | 1+31828T+p5T2 |
| 61 | 1−57654T+p5T2 |
| 67 | 1+60563T+p5T2 |
| 71 | 1−44834T+p5T2 |
| 73 | 1+20821T+p5T2 |
| 79 | 1+30531T+p5T2 |
| 83 | 1−110602T+p5T2 |
| 89 | 1+58992T+p5T2 |
| 97 | 1−119846T+p5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.381505732498017334352561443603, −8.781340715330865038513138619024, −7.42732619370093528572541300681, −6.57511890994112369420462263220, −5.86307452314953997834974922781, −5.10660074364078447294055615182, −4.15683984339772916483016734544, −2.76252317727516102124637699455, −2.13088633506956037150618080989, −0.958677653623058506280910806501,
0.958677653623058506280910806501, 2.13088633506956037150618080989, 2.76252317727516102124637699455, 4.15683984339772916483016734544, 5.10660074364078447294055615182, 5.86307452314953997834974922781, 6.57511890994112369420462263220, 7.42732619370093528572541300681, 8.781340715330865038513138619024, 9.381505732498017334352561443603