Properties

Label 2-882-1.1-c5-0-40
Degree $2$
Conductor $882$
Sign $1$
Analytic cond. $141.458$
Root an. cond. $11.8936$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·2-s + 16·4-s + 86·5-s + 64·8-s + 344·10-s − 34·11-s + 3·13-s + 256·16-s − 1.90e3·17-s + 1.48e3·19-s + 1.37e3·20-s − 136·22-s + 224·23-s + 4.27e3·25-s + 12·26-s + 6.50e3·29-s − 1.73e3·31-s + 1.02e3·32-s − 7.61e3·34-s − 7.63e3·37-s + 5.95e3·38-s + 5.50e3·40-s + 1.54e4·41-s + 1.84e4·43-s − 544·44-s + 896·46-s + 1.84e4·47-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 1.53·5-s + 0.353·8-s + 1.08·10-s − 0.0847·11-s + 0.00492·13-s + 1/4·16-s − 1.59·17-s + 0.946·19-s + 0.769·20-s − 0.0599·22-s + 0.0882·23-s + 1.36·25-s + 0.00348·26-s + 1.43·29-s − 0.323·31-s + 0.176·32-s − 1.12·34-s − 0.916·37-s + 0.669·38-s + 0.543·40-s + 1.43·41-s + 1.52·43-s − 0.0423·44-s + 0.0624·46-s + 1.21·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(882\)    =    \(2 \cdot 3^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(141.458\)
Root analytic conductor: \(11.8936\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 882,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(5.379672344\)
\(L(\frac12)\) \(\approx\) \(5.379672344\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - p^{2} T \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 - 86 T + p^{5} T^{2} \)
11 \( 1 + 34 T + p^{5} T^{2} \)
13 \( 1 - 3 T + p^{5} T^{2} \)
17 \( 1 + 112 p T + p^{5} T^{2} \)
19 \( 1 - 1489 T + p^{5} T^{2} \)
23 \( 1 - 224 T + p^{5} T^{2} \)
29 \( 1 - 6508 T + p^{5} T^{2} \)
31 \( 1 + 1731 T + p^{5} T^{2} \)
37 \( 1 + 7633 T + p^{5} T^{2} \)
41 \( 1 - 15414 T + p^{5} T^{2} \)
43 \( 1 - 18491 T + p^{5} T^{2} \)
47 \( 1 - 18462 T + p^{5} T^{2} \)
53 \( 1 - 19956 T + p^{5} T^{2} \)
59 \( 1 + 31828 T + p^{5} T^{2} \)
61 \( 1 - 57654 T + p^{5} T^{2} \)
67 \( 1 + 60563 T + p^{5} T^{2} \)
71 \( 1 - 44834 T + p^{5} T^{2} \)
73 \( 1 + 20821 T + p^{5} T^{2} \)
79 \( 1 + 30531 T + p^{5} T^{2} \)
83 \( 1 - 110602 T + p^{5} T^{2} \)
89 \( 1 + 58992 T + p^{5} T^{2} \)
97 \( 1 - 119846 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.381505732498017334352561443603, −8.781340715330865038513138619024, −7.42732619370093528572541300681, −6.57511890994112369420462263220, −5.86307452314953997834974922781, −5.10660074364078447294055615182, −4.15683984339772916483016734544, −2.76252317727516102124637699455, −2.13088633506956037150618080989, −0.958677653623058506280910806501, 0.958677653623058506280910806501, 2.13088633506956037150618080989, 2.76252317727516102124637699455, 4.15683984339772916483016734544, 5.10660074364078447294055615182, 5.86307452314953997834974922781, 6.57511890994112369420462263220, 7.42732619370093528572541300681, 8.781340715330865038513138619024, 9.381505732498017334352561443603

Graph of the $Z$-function along the critical line