Properties

Label 2-882-1.1-c5-0-38
Degree $2$
Conductor $882$
Sign $-1$
Analytic cond. $141.458$
Root an. cond. $11.8936$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s + 16·4-s − 75.4·5-s − 64·8-s + 301.·10-s + 149.·11-s − 349.·13-s + 256·16-s − 1.14e3·17-s + 2.79e3·19-s − 1.20e3·20-s − 597.·22-s − 1.81e3·23-s + 2.57e3·25-s + 1.39e3·26-s + 759.·29-s − 9.03e3·31-s − 1.02e3·32-s + 4.59e3·34-s + 7.79e3·37-s − 1.11e4·38-s + 4.83e3·40-s + 7.64e3·41-s + 1.21e4·43-s + 2.39e3·44-s + 7.25e3·46-s + 2.45e4·47-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.5·4-s − 1.35·5-s − 0.353·8-s + 0.954·10-s + 0.372·11-s − 0.573·13-s + 0.250·16-s − 0.964·17-s + 1.77·19-s − 0.675·20-s − 0.263·22-s − 0.715·23-s + 0.823·25-s + 0.405·26-s + 0.167·29-s − 1.68·31-s − 0.176·32-s + 0.682·34-s + 0.936·37-s − 1.25·38-s + 0.477·40-s + 0.709·41-s + 1.00·43-s + 0.186·44-s + 0.505·46-s + 1.62·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(882\)    =    \(2 \cdot 3^{2} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(141.458\)
Root analytic conductor: \(11.8936\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 882,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 4T \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 + 75.4T + 3.12e3T^{2} \)
11 \( 1 - 149.T + 1.61e5T^{2} \)
13 \( 1 + 349.T + 3.71e5T^{2} \)
17 \( 1 + 1.14e3T + 1.41e6T^{2} \)
19 \( 1 - 2.79e3T + 2.47e6T^{2} \)
23 \( 1 + 1.81e3T + 6.43e6T^{2} \)
29 \( 1 - 759.T + 2.05e7T^{2} \)
31 \( 1 + 9.03e3T + 2.86e7T^{2} \)
37 \( 1 - 7.79e3T + 6.93e7T^{2} \)
41 \( 1 - 7.64e3T + 1.15e8T^{2} \)
43 \( 1 - 1.21e4T + 1.47e8T^{2} \)
47 \( 1 - 2.45e4T + 2.29e8T^{2} \)
53 \( 1 + 1.35e4T + 4.18e8T^{2} \)
59 \( 1 + 2.63e4T + 7.14e8T^{2} \)
61 \( 1 + 3.53e4T + 8.44e8T^{2} \)
67 \( 1 - 5.43e4T + 1.35e9T^{2} \)
71 \( 1 - 7.01e4T + 1.80e9T^{2} \)
73 \( 1 - 4.44e4T + 2.07e9T^{2} \)
79 \( 1 - 6.16e4T + 3.07e9T^{2} \)
83 \( 1 + 8.71e4T + 3.93e9T^{2} \)
89 \( 1 - 9.85e4T + 5.58e9T^{2} \)
97 \( 1 + 3.23e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.122967579408345301105672359664, −7.87488213768432862565109879127, −7.59986802901357946926291486359, −6.70346829860673560579288455765, −5.51679574437906724904096269878, −4.33068137825321978997266489929, −3.50311526236590679312837458846, −2.33876026178801805805615635408, −0.946722620384081625664183226747, 0, 0.946722620384081625664183226747, 2.33876026178801805805615635408, 3.50311526236590679312837458846, 4.33068137825321978997266489929, 5.51679574437906724904096269878, 6.70346829860673560579288455765, 7.59986802901357946926291486359, 7.87488213768432862565109879127, 9.122967579408345301105672359664

Graph of the $Z$-function along the critical line