Properties

Label 2-882-1.1-c5-0-28
Degree $2$
Conductor $882$
Sign $1$
Analytic cond. $141.458$
Root an. cond. $11.8936$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s + 16·4-s + 75.4·5-s − 64·8-s − 301.·10-s + 149.·11-s + 349.·13-s + 256·16-s + 1.14e3·17-s − 2.79e3·19-s + 1.20e3·20-s − 597.·22-s − 1.81e3·23-s + 2.57e3·25-s − 1.39e3·26-s + 759.·29-s + 9.03e3·31-s − 1.02e3·32-s − 4.59e3·34-s + 7.79e3·37-s + 1.11e4·38-s − 4.83e3·40-s − 7.64e3·41-s + 1.21e4·43-s + 2.39e3·44-s + 7.25e3·46-s − 2.45e4·47-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.5·4-s + 1.35·5-s − 0.353·8-s − 0.954·10-s + 0.372·11-s + 0.573·13-s + 0.250·16-s + 0.964·17-s − 1.77·19-s + 0.675·20-s − 0.263·22-s − 0.715·23-s + 0.823·25-s − 0.405·26-s + 0.167·29-s + 1.68·31-s − 0.176·32-s − 0.682·34-s + 0.936·37-s + 1.25·38-s − 0.477·40-s − 0.709·41-s + 1.00·43-s + 0.186·44-s + 0.505·46-s − 1.62·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(882\)    =    \(2 \cdot 3^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(141.458\)
Root analytic conductor: \(11.8936\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 882,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(2.327936979\)
\(L(\frac12)\) \(\approx\) \(2.327936979\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 4T \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 - 75.4T + 3.12e3T^{2} \)
11 \( 1 - 149.T + 1.61e5T^{2} \)
13 \( 1 - 349.T + 3.71e5T^{2} \)
17 \( 1 - 1.14e3T + 1.41e6T^{2} \)
19 \( 1 + 2.79e3T + 2.47e6T^{2} \)
23 \( 1 + 1.81e3T + 6.43e6T^{2} \)
29 \( 1 - 759.T + 2.05e7T^{2} \)
31 \( 1 - 9.03e3T + 2.86e7T^{2} \)
37 \( 1 - 7.79e3T + 6.93e7T^{2} \)
41 \( 1 + 7.64e3T + 1.15e8T^{2} \)
43 \( 1 - 1.21e4T + 1.47e8T^{2} \)
47 \( 1 + 2.45e4T + 2.29e8T^{2} \)
53 \( 1 + 1.35e4T + 4.18e8T^{2} \)
59 \( 1 - 2.63e4T + 7.14e8T^{2} \)
61 \( 1 - 3.53e4T + 8.44e8T^{2} \)
67 \( 1 - 5.43e4T + 1.35e9T^{2} \)
71 \( 1 - 7.01e4T + 1.80e9T^{2} \)
73 \( 1 + 4.44e4T + 2.07e9T^{2} \)
79 \( 1 - 6.16e4T + 3.07e9T^{2} \)
83 \( 1 - 8.71e4T + 3.93e9T^{2} \)
89 \( 1 + 9.85e4T + 5.58e9T^{2} \)
97 \( 1 - 3.23e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.593686679517239067262318382131, −8.544752750726073573826070796095, −7.998780579032255700507522745134, −6.47022427341208347137695788168, −6.33179203700402331810076632712, −5.21970523094121470338683659920, −3.92487015276632896605164943347, −2.58498643910345095811980946115, −1.76631922511798681376834421417, −0.78171304658874428420891550419, 0.78171304658874428420891550419, 1.76631922511798681376834421417, 2.58498643910345095811980946115, 3.92487015276632896605164943347, 5.21970523094121470338683659920, 6.33179203700402331810076632712, 6.47022427341208347137695788168, 7.998780579032255700507522745134, 8.544752750726073573826070796095, 9.593686679517239067262318382131

Graph of the $Z$-function along the critical line