Properties

Label 2-882-1.1-c5-0-20
Degree $2$
Conductor $882$
Sign $1$
Analytic cond. $141.458$
Root an. cond. $11.8936$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s + 16·4-s − 54·5-s − 64·8-s + 216·10-s + 594·11-s − 26·13-s + 256·16-s + 534·17-s + 3.00e3·19-s − 864·20-s − 2.37e3·22-s + 3.51e3·23-s − 209·25-s + 104·26-s + 4.29e3·29-s − 8.03e3·31-s − 1.02e3·32-s − 2.13e3·34-s − 502·37-s − 1.20e4·38-s + 3.45e3·40-s − 9.87e3·41-s + 9.06e3·43-s + 9.50e3·44-s − 1.40e4·46-s − 1.14e3·47-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.965·5-s − 0.353·8-s + 0.683·10-s + 1.48·11-s − 0.0426·13-s + 1/4·16-s + 0.448·17-s + 1.90·19-s − 0.482·20-s − 1.04·22-s + 1.38·23-s − 0.0668·25-s + 0.0301·26-s + 0.948·29-s − 1.50·31-s − 0.176·32-s − 0.316·34-s − 0.0602·37-s − 1.34·38-s + 0.341·40-s − 0.916·41-s + 0.747·43-s + 0.740·44-s − 0.978·46-s − 0.0752·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(882\)    =    \(2 \cdot 3^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(141.458\)
Root analytic conductor: \(11.8936\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 882,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(1.561179078\)
\(L(\frac12)\) \(\approx\) \(1.561179078\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + p^{2} T \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 + 54 T + p^{5} T^{2} \)
11 \( 1 - 54 p T + p^{5} T^{2} \)
13 \( 1 + 2 p T + p^{5} T^{2} \)
17 \( 1 - 534 T + p^{5} T^{2} \)
19 \( 1 - 3004 T + p^{5} T^{2} \)
23 \( 1 - 3510 T + p^{5} T^{2} \)
29 \( 1 - 4296 T + p^{5} T^{2} \)
31 \( 1 + 8036 T + p^{5} T^{2} \)
37 \( 1 + 502 T + p^{5} T^{2} \)
41 \( 1 + 9870 T + p^{5} T^{2} \)
43 \( 1 - 9068 T + p^{5} T^{2} \)
47 \( 1 + 1140 T + p^{5} T^{2} \)
53 \( 1 - 28356 T + p^{5} T^{2} \)
59 \( 1 - 8196 T + p^{5} T^{2} \)
61 \( 1 + 29822 T + p^{5} T^{2} \)
67 \( 1 + 62884 T + p^{5} T^{2} \)
71 \( 1 + 34398 T + p^{5} T^{2} \)
73 \( 1 + 56990 T + p^{5} T^{2} \)
79 \( 1 - 49496 T + p^{5} T^{2} \)
83 \( 1 - 52512 T + p^{5} T^{2} \)
89 \( 1 - 48282 T + p^{5} T^{2} \)
97 \( 1 - 83938 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.189476434028089374223568211108, −8.757167882597757485016931686790, −7.48424986587415938352901067551, −7.27058394465797468843504994687, −6.11614400893696706878541128583, −4.98669429633174983089053266085, −3.77811131965039058122906361263, −3.08445562069931535246207199051, −1.46505499338608114097251893203, −0.68648713253101715572545763388, 0.68648713253101715572545763388, 1.46505499338608114097251893203, 3.08445562069931535246207199051, 3.77811131965039058122906361263, 4.98669429633174983089053266085, 6.11614400893696706878541128583, 7.27058394465797468843504994687, 7.48424986587415938352901067551, 8.757167882597757485016931686790, 9.189476434028089374223568211108

Graph of the $Z$-function along the critical line