L(s) = 1 | − 4·2-s + 16·4-s − 54·5-s − 64·8-s + 216·10-s + 594·11-s − 26·13-s + 256·16-s + 534·17-s + 3.00e3·19-s − 864·20-s − 2.37e3·22-s + 3.51e3·23-s − 209·25-s + 104·26-s + 4.29e3·29-s − 8.03e3·31-s − 1.02e3·32-s − 2.13e3·34-s − 502·37-s − 1.20e4·38-s + 3.45e3·40-s − 9.87e3·41-s + 9.06e3·43-s + 9.50e3·44-s − 1.40e4·46-s − 1.14e3·47-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1/2·4-s − 0.965·5-s − 0.353·8-s + 0.683·10-s + 1.48·11-s − 0.0426·13-s + 1/4·16-s + 0.448·17-s + 1.90·19-s − 0.482·20-s − 1.04·22-s + 1.38·23-s − 0.0668·25-s + 0.0301·26-s + 0.948·29-s − 1.50·31-s − 0.176·32-s − 0.316·34-s − 0.0602·37-s − 1.34·38-s + 0.341·40-s − 0.916·41-s + 0.747·43-s + 0.740·44-s − 0.978·46-s − 0.0752·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(1.561179078\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.561179078\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + p^{2} T \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + 54 T + p^{5} T^{2} \) |
| 11 | \( 1 - 54 p T + p^{5} T^{2} \) |
| 13 | \( 1 + 2 p T + p^{5} T^{2} \) |
| 17 | \( 1 - 534 T + p^{5} T^{2} \) |
| 19 | \( 1 - 3004 T + p^{5} T^{2} \) |
| 23 | \( 1 - 3510 T + p^{5} T^{2} \) |
| 29 | \( 1 - 4296 T + p^{5} T^{2} \) |
| 31 | \( 1 + 8036 T + p^{5} T^{2} \) |
| 37 | \( 1 + 502 T + p^{5} T^{2} \) |
| 41 | \( 1 + 9870 T + p^{5} T^{2} \) |
| 43 | \( 1 - 9068 T + p^{5} T^{2} \) |
| 47 | \( 1 + 1140 T + p^{5} T^{2} \) |
| 53 | \( 1 - 28356 T + p^{5} T^{2} \) |
| 59 | \( 1 - 8196 T + p^{5} T^{2} \) |
| 61 | \( 1 + 29822 T + p^{5} T^{2} \) |
| 67 | \( 1 + 62884 T + p^{5} T^{2} \) |
| 71 | \( 1 + 34398 T + p^{5} T^{2} \) |
| 73 | \( 1 + 56990 T + p^{5} T^{2} \) |
| 79 | \( 1 - 49496 T + p^{5} T^{2} \) |
| 83 | \( 1 - 52512 T + p^{5} T^{2} \) |
| 89 | \( 1 - 48282 T + p^{5} T^{2} \) |
| 97 | \( 1 - 83938 T + p^{5} T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.189476434028089374223568211108, −8.757167882597757485016931686790, −7.48424986587415938352901067551, −7.27058394465797468843504994687, −6.11614400893696706878541128583, −4.98669429633174983089053266085, −3.77811131965039058122906361263, −3.08445562069931535246207199051, −1.46505499338608114097251893203, −0.68648713253101715572545763388,
0.68648713253101715572545763388, 1.46505499338608114097251893203, 3.08445562069931535246207199051, 3.77811131965039058122906361263, 4.98669429633174983089053266085, 6.11614400893696706878541128583, 7.27058394465797468843504994687, 7.48424986587415938352901067551, 8.757167882597757485016931686790, 9.189476434028089374223568211108