L(s) = 1 | − 4·2-s + 16·4-s − 54·5-s − 64·8-s + 216·10-s + 594·11-s − 26·13-s + 256·16-s + 534·17-s + 3.00e3·19-s − 864·20-s − 2.37e3·22-s + 3.51e3·23-s − 209·25-s + 104·26-s + 4.29e3·29-s − 8.03e3·31-s − 1.02e3·32-s − 2.13e3·34-s − 502·37-s − 1.20e4·38-s + 3.45e3·40-s − 9.87e3·41-s + 9.06e3·43-s + 9.50e3·44-s − 1.40e4·46-s − 1.14e3·47-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1/2·4-s − 0.965·5-s − 0.353·8-s + 0.683·10-s + 1.48·11-s − 0.0426·13-s + 1/4·16-s + 0.448·17-s + 1.90·19-s − 0.482·20-s − 1.04·22-s + 1.38·23-s − 0.0668·25-s + 0.0301·26-s + 0.948·29-s − 1.50·31-s − 0.176·32-s − 0.316·34-s − 0.0602·37-s − 1.34·38-s + 0.341·40-s − 0.916·41-s + 0.747·43-s + 0.740·44-s − 0.978·46-s − 0.0752·47-s + ⋯ |
Λ(s)=(=(882s/2ΓC(s)L(s)Λ(6−s)
Λ(s)=(=(882s/2ΓC(s+5/2)L(s)Λ(1−s)
Particular Values
L(3) |
≈ |
1.561179078 |
L(21) |
≈ |
1.561179078 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+p2T |
| 3 | 1 |
| 7 | 1 |
good | 5 | 1+54T+p5T2 |
| 11 | 1−54pT+p5T2 |
| 13 | 1+2pT+p5T2 |
| 17 | 1−534T+p5T2 |
| 19 | 1−3004T+p5T2 |
| 23 | 1−3510T+p5T2 |
| 29 | 1−4296T+p5T2 |
| 31 | 1+8036T+p5T2 |
| 37 | 1+502T+p5T2 |
| 41 | 1+9870T+p5T2 |
| 43 | 1−9068T+p5T2 |
| 47 | 1+1140T+p5T2 |
| 53 | 1−28356T+p5T2 |
| 59 | 1−8196T+p5T2 |
| 61 | 1+29822T+p5T2 |
| 67 | 1+62884T+p5T2 |
| 71 | 1+34398T+p5T2 |
| 73 | 1+56990T+p5T2 |
| 79 | 1−49496T+p5T2 |
| 83 | 1−52512T+p5T2 |
| 89 | 1−48282T+p5T2 |
| 97 | 1−83938T+p5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.189476434028089374223568211108, −8.757167882597757485016931686790, −7.48424986587415938352901067551, −7.27058394465797468843504994687, −6.11614400893696706878541128583, −4.98669429633174983089053266085, −3.77811131965039058122906361263, −3.08445562069931535246207199051, −1.46505499338608114097251893203, −0.68648713253101715572545763388,
0.68648713253101715572545763388, 1.46505499338608114097251893203, 3.08445562069931535246207199051, 3.77811131965039058122906361263, 4.98669429633174983089053266085, 6.11614400893696706878541128583, 7.27058394465797468843504994687, 7.48424986587415938352901067551, 8.757167882597757485016931686790, 9.189476434028089374223568211108